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Abstract

State of the art neural networks provide a rich class of function approximators,
fueling the remarkable success of gradient-based deep learning on complex
high-dimensional problems, ranging from natural language modeling to image
and video generation and understanding. Modern deep networks enjoy suffi-
cient expressive power to shatter common classification benchmarks, as well
as interpolate noisy regression targets. At the same time, the same models are
able to generalize well whilst perfectly fitting noisy training data, even in the
absence of external regularization constraining model expressivity. Efforts to-
wards making sense of the observed benign overfitting behaviour uncovered its
occurrence in overparameterized linear regression as well as kernel regression,
extending classical empirical risk minimization to the study of minimum norm
interpolators. Existing theoretical understanding of the phenomenon identi-
fies two key factors affecting the generalization ability of interpolating models.
First, overparameterization – corresponding to the regime in which a model
counts more parameters than the number of constraints imposed by the train-
ing sample – effectively reduces model variance in proximity of the training
data. Second, the structure of the learner – which determines how patterns
in the training data are encoded in the learned representation – controls the
ability to separate signal from noise when attaining interpolation. Analyzing
the above factors for deep finite-width networks respectively entails charac-
terizing the mechanisms driving feature learning and norm-based capacity
control in practical settings, thus posing a challenging open problem. The
present thesis explores the problem of capturing effective complexity of finite-
width deep networks trained in practice, through the lens of model function
geometry, focusing on factors implicitly restricting model complexity. First,
model expressivity is contrasted to effective nonlinearity for models under-
going double descent, highlighting constrained effective complexity afforded
by overparameterization. Second, the geometry of interpolation is studied
in the presence of noisy targets, observing robust interpolation over volumes
of size controlled by model scale. Third, the observed behavior is formally
tied to parameter-space curvature, connecting parameter-space geometry to
the input space’s. Finally, the thesis concludes by investigating whether the
findings translate to the context of self-supervised learning, relating the ge-
ometry of representations to downstream robustness, and highlighting trends
in keeping with neural scaling laws. The present work isolates input-space
smoothness as a key notion for characterizing effective complexity of model
functions expressed by overparameterized deep networks.
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Sammanfattning

Toppmoderna neurala nätverk erbjuder en rik klass funktionsapproximatorer,
vilket stimulerar den anmärkningsvärda utvecklingen av gradientbaserad dju-
pinlärning för komplexa högdimensionella problem, allt från modellering av
naturligt språk till bild- och videogenerering och förståelse. Moderna djupa
nätverk har tillräckligt mycket expressiv kraft för att kunna slå vanliga klas-
sificeringsbenchmarks, samt interpolera brusiga regressionsmål. Samma mo-
deller kan generalisera väl samtidigt som de kan anpassas perfekt till brusig
träningsdata, även i frånvaro av extern regularisering som begränsar model-
lens uttrycksförmåga. Ansträngningar för att förstå det observerade så kallade
benign overfitting-beteendet har påvisat dess förekomst i överparameteriserad
linjär regression såväl som i kärn-baserad regression, vilket utvidgar klassisk
empirisk riskminimering till studiet av miniminorm interpolatorer. Befintlig
teoretisk förståelse av fenomenet identifierar två nyckelfaktorer som påverkar
generaliseringsförmågan hos interpolerande modeller. För det första reducerar
överparameterisering - motsvarande regimen där en modell har fler paramet-
rar än antalet villkor som ställs av träningsproven - effektivt modellvariansen
i närheten av träningsdatan. För det andra styr inlärningens struktur - som
bestämmer hur mönster i träningsdata kodas i den inlärda representationen
- förmågan att separera signal från brus när interpolering uppnås. Att ana-
lysera ovanstående faktorer för nätverk med djup ändlig bredd innebär att
karakterisera de mekanismer som driver funktionsinlärning och normbaserad
kapacitetskontroll i praktiska sammanhang, vilket utgör ett utmanande öppet
problem. Den föreliggande avhandlingen utforskar problemet med att fånga
den effektiva komplexiteten hos djupa nätverk med ändlig bredd som tränas
i praktiken, sett genom linsen av modellfunktionens geometri, med fokus på
faktorer som implicit begränsar modellens komplexitet. För det första kontras-
teras modellexpressivitet till effektiv olinjäritet för modeller som genomgår så
kallad double descent, vilket framhäver begränsad effektiv komplexitet som
ges av överparameterisering. För det andra studeras interpolationens geome-
tri i närvaro av brusiga mål, och observerar robust interpolation över volymer
av storlekar bestämda av modellskalan. För det tredje kopplas det obser-
verade beteendet formellt till parameter-rymdens krökning, vilket kopplar
parameterrymdens geometri till indatarymdens. Slutligen avslutas avhand-
lingen med att undersöka huruvida resultaten kan översättas till kontexten
av självövervakad inlärning, relaterar representationernas geometri till ned-
ströms robusthet, och belyser trender i linje med neurala skalningslagar. Det
föreliggande arbetet isolerar indatarymdens jämnhet som ett nyckelbegrepp
för att karakterisera effektiv komplexitet hos modellfunktioner uttryckta av
överparameteriserade djupa nätverk.
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Chapter 1

Introduction

The past decade has set deep networks apart from other machine learning algo-
rithms in two important ways. On the one hand, the synergy between deep net-
works and large-scale datasets has fueled the success and widespread adoption of
deep learning for discriminative [1]–[7], generative [8]–[15], as well as reinforce-
ment learning problems [16]–[21]. On the other hand, deep networks stand out
for missing a comprehensive foundational theory accounting for their generaliza-
tion ability [22]–[26]. In principle, a pragmatic theory of deep learning should be
able to quantitatively predict, up to bounded error, the performance of a given
network architecture on a specified task or data distribution, and prescribe recipes
for improving performance, stability or efficiency of a model. According to no-free-
lunch theorems [27], [28], the theory should account for inductive biases embedded
in the model and error function considered, and their alignment with structural
properties of the task [29]. Consequently, a comprehensive theory should allow to
quantify robustness of a deep learning algorithm to certain distribution shifts [30],
[31], for instance noisy and adversarially crafted input [32], [33], as well as noisy
training targets [34]. Importantly, such a theory could allow to identify and isolate
failure modes of a learning algorithm [35]–[37], and provide guarantees on safety of
a model in the wild. Finally, a more direct theoretical understanding would allow
to design novel architectures, regularization strategies, as well as faster optimizers,
and guide practitioners in allocating resources when tackling a new problem [38],
[39]. Efforts towards understanding the performance, limitations, and inner work-
ings of deep networks can be broadly categorized into two groups, both of which
have substantially shaped the current understanding of the field. On the one hand,
experiment-driven approaches study emerging properties and structure of modern
deep networks trained on real-world datasets, focusing on state of the art models
and training practices, and accounting for the influence of specific hyperparame-
ters and design choices. Foundational approaches, on the other hand, strip down a
complex practical problem in order to build a minimal model of the phenomenon
of interest, against which hypotheses can be formally defined and tested.

3
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Towards A Foundational Theory of Deep Learning
Ultimately, a foundational theory should provide an essential model of deep learn-
ing, capturing the classes of problems that can be successfully cast as neural network
optimization and can be approximately solved by first order methods [40]. In the
pursuit of building a rigorous foundation of deep learning, minimal models allow
to focus on selected aspects of the problem, which are often emphasized through
asymptotic or mean-field analysis [41], while disregarding its more complex instan-
tiations, e.g. the impact of a particular neural network topology or training hy-
perparameter, or by approximating a discrete problem with a continuous one [42].
While minimal models may provide a more rigid characterization of what is in prac-
tice a noisy stochastic process, they serve as a mathematical metaphor with which
the problem can be understood and more precise conjectures can be formulated.
Recent advances have provided minimal models of certain aspects of deep learning:

• The Neural Tangent Kernel (NTK) [43] establishes a connection between
infinitely-wide neural networks and ridgeless kernel regression, allowing to
study the evolution of deep networks under (kernel) gradient descent [44],
[45], providing a closed form for the optimization trajectories. In the kernel
regression duality, wide networks operate in the so called lazy regime, whereby
parameters change negligibly from initialization [43], thereby failing to cap-
ture the rich regime [46] of feature learning. Particularly, the kernel regime
fails to match the performance of finite-width networks in some settings [23],
supporting the hypothesis that feature learning is an important component
of deep learning [47]. To this end, recent works isolate tasks that are easily
solved by finite-width networks, but not in the NTK regime [48]–[50].

• Random matrix theory [51] allows to describe deep networks at initializa-
tion [51], [52], as well as random feature models [53], with recent works
indicating that “good” conditioning of the loss landscape is determined by
the network architecture and parameter initialization scheme [54], emphasiz-
ing their role over the stochastic optimizer’s in ensuring generalization. At
the same time, Martin and Mahoney [55] report the emergence of heavy-tailed
eigenspectra in the weight tensors of generalizing networks in connection with
implicit model regularization in the feature-rich regime [56], noting the phe-
nomenon is controlled on a minimal model by optimizer hyperparameters.

• Finally, mean-field theory provides a limiting case for infinitely-wide networks
under a different parameterization of width-scaling, going beyond the lazy
regime and exhibiting some degree of feature learning [57], [58].

Beyond current minimal models, a fundamental open question lies in understanding
the emergence of structured representations in finite-width networks [59], which in
large-scale classification settings [60] learn transferable semantic features [61]–[64],
as well as show emerging abilities in large-scale models, i.e. desirable properties not
directly enforced in the underlying optimization problem [22], [65], [66]. At present,
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developing a minimal model of the problem remains an active area of research [59],
[67]–[69]. Importantly, understanding the emergence of structures may help reveal
the mechanisms underpinning generalization, motivating further empirical studies.

The Role of Empiricism in Shaping Theory
Empirical studies have played a considerable role in shaping current understand-
ing of deep learning, by exposing emergent behaviour and structure of trained
state-of-the-art models. Over the years, a number of surprising findings have been
reported [33], [66], [70]–[80], exposing limitations of classical theory [78], [81], and
yielding practical advances [82]–[86] including novel training paradigms [14], [32].
Remarkably, deep networks trained on supervised tasks have sufficient expressive
power to perfectly fit arbitrary labelings of the training data [78], [87], [88], while at
the same time achieving state-of-the-art performance on several natural datasets,
suggesting that expressivity is effectively constrained when networks are trained on
natural data. An important consequence is that classical complexity measures, such
as Vapnik-Chervonenkis (VC) dimension [89] and Rademacher complexity [90], fail
to adequately capture the generalization performance of modern deep networks,
by estimating complexity uniformly over the entire hypothesis space, namely the
space of functions theoretically expressible by the model. Indeed, overwhelming ev-
idence shows that complexity is effectively constrained in practice, and that trained
networks are endowed with stronger structure than what theoretically afforded by
their high expressive power [91], and what captured by minimal models.

• According to the lottery ticket hypothesis, the final performance of a trained
network can be retained and even improved when a large fraction of the
weights are removed via iterative pruning and retraining [86], so long as the
unpruned parameters are reset to their respective value at initialization be-
fore retraining. This suggests that, while depth and overparameterization
are beneficial for successful training [92], only a very sparse subnetwork is
responsible for the final model performance.

• Perhaps more strikingly, the performance of a trained network is largely un-
affected if entire layers are reset to their value at initialization, a phenomenon
known as module criticality. However, if those layers are removed and a shal-
lower network is trained from scratch, the final performance is lower than
that of the deeper model [77], [93].

• The loss landscape of deep networks exhibits linear mode connectivity, whereby
the solutions of different training runs of the same architecture are connected
by a linear path with low loss barriers [71], [74], [94], [95]. Averaging two con-
nected solutions may lead to better performance [82], and allows for semantic
manipulation of the features of fine-tuned models [85].

• Neural networks may exhibit delayed generalization, whereupon training ini-
tially results in memorization of the training data and random test perfor-



6 CHAPTER 1. INTRODUCTION

mance. However, under certain conditions, prolonged training may result in
a sudden improvement in test performance, giving rise to grokking [72], [96],
[97]. The phenomenon can be induced in practical settings by controlling
the norm of the weights at initialization, and has been connected to the lazy
regime of training [98]. Grokking has also been observed beyond general-
ization performance, with recent work highlighting the emergence of delayed
adversarial robustness upon prolonged training [70].

The above evidence indicates that deep networks trained in practice express a more
restricted set of solutions, characterized by emerging structures. Hence, under-
standing the generalization ability of deep networks is intimately tied to measuring
effective complexity, i.e. capturing and modelling the hypothesis class of functions
expressed in practice by networks trained on real-world data, in contrast to the
space of functions theoretically expressible by a given architecture [55], [76], [99].

Guiding Questions
The present thesis focuses on overparameterized deep networks trained on super-
vised learning tasks, with the goal of characterizing effective complexity of deep net-
works trained in practice, thus focusing on the feature-rich regime. An important
open question explored throughout the thesis is understanding when deep networks
trained until interpolation on noisy data generalize. To investigate the question, a
promising venue is identified in capturing structure and regularity emerging from
training. Focusing on classification tasks, the problem is approached as a natural
phenomenon [100], by measuring the effect of interventions on models trained in
practice, thereby grounding the study on empirical evidence. A second important
question lies in exploring mechanisms constraining effective complexity, in relation
to the model architecture and its interaction with optimization. Finally, the prob-
lem of capturing generalization is extended to Self-Supervised Learning (SSL) [101]–
[103], an unsupervised training paradigm yielding competitive performance [104]
with supervised learning on vision and language tasks.

1.1 On the Ill-Posed Nature of Deep Learning

Isolating factors that control and constrain effective complexity entails several the-
oretical challenges. First, from a dynamics standpoint, the high-dimensional loss
landscape of deep networks is non-convex, admitting multiple local minima [105]–
[107], as well as saddles [108]. Second, from an expressivity perspective, modern ar-
chitectures are overparameterized, i.e. they enjoy more degrees of freedom than the
number of constraints imposed by the training sample [24], [87]. Indeed, overparam-
eterized network optimization admits multiple solutions interpolating the training
data, with vastly different generalization ability [72], [78], [97], contradicting uni-
form convergence assumptions [81]. Thus, the training of multi-layer networks is
ill-posed, in that a single problem instance admits multiple possible solutions.
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Definition 1.1.1 (Well-posed problem [109]). A problem is said to be well-posed
if, for every problem instance, there exists a unique solution which continuously
depends on the initial conditions. Otherwise, the problem is ill-posed.

The ill-posed nature of deep learning makes direct theoretical analysis challenging,
since individual instances of a learning problem may admit multiple solutions with
different generalization ability. However, in practical settings, first-order optimiza-
tion can consistently recover generalizing solutions on a multitude of tasks [110],
[111], suggesting the existence of additional mechanisms controlling complexity.

Explicit regularization A common strategy to address ill-posedness of a prob-
lem is Tikhonov regularization [112], which allows to restrict the space of solutions
by adding constraints to the problem. If the constraints are formulated in terms of a
controllable (hyper-)parameter, for instance expressed via a Lagrangian multiplier,
then regularization is said to be explicit and its strength can be manually tuned.
At present, different explicit regularizers are employed by practitioners to ensure
stable training and boost performance of deep learning algorithms [113]–[115]. At
the same time, deep networks attain non-trivial generalization performance also in
the absence of explicit regularization [88], suggesting that the true factors under-
pinning generalization are implicitly embedded in the model architecture, weight
initialization, and their interplay with the optimization procedure [25], [78], [116].

Implicit regularization The choice of model architecture and optimization al-
gorithm can restrict or bias learning, effectively encoding a preference towards a
particular family of solutions, thereby exerting implicit regularization [25]. Under-
standing implicit regularization in machine learning is an important problem even
beyond neural networks [117], [118]. In some settings, characterizing an implicit
regularization mechanism allows to formulate it as an explicit one, whereby reg-
ularization strength can be understood and controlled [119]. The neural network
architecture as well as Stochastic Gradient Descent (SGD) are each thought to ex-
ert implicit regularization on training, encoding priors that are well aligned with
the physical world [120]–[122], and biasing optimization trajectories towards sta-
ble solutions [123]. A central question to this thesis is exploring the emergence of
regularization, interpreted as structure encoded in a model’s parameters resulting
in reduced expressivity. The focus of the works hereby presented is on isolating
regularity of functions expressed in practice by deep networks, in relationship to
the model architecture and its interaction with the optimizer. In the following,
the formalism of Empirical Risk Minimization (ERM) is adopted to introduce the
research questions explored in the thesis.

Empirical Risk Minimization
For a population distribution P(x, y) jointly defined over a space of input-response
pairs (x, y) ∈ X × Y, supervised learning involves estimating the conditional dis-
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tribution P(y|x) given access to samples from the population. The relationship
between x and y is typically modelled by a function f : X → Y called statistical
hypothesis, belonging to a larger set of functions H called hypothesis space. In sim-
plified settings, uncertainty in the observed data due to error is expressed by the
relationship y = f∗(x) + ε, for conditionally independent noise ε with zero mean
and variance σ2 > 0. Given a non-negative measure L(f,x, y) expressing the error
incurred by a particular hypothesis f when predicting f(x) with ground-truth y,
the risk associated with the hypothesis is defined as

R(f) = E(x,y)∼P(x,y)[L(f(x), y)] (1.1)

The optimal predictor f∗ is defined as the one minimizing the risk

f∗ = argmin
f∈H

R(f) (1.2)

However, since the population distribution is in general not accessible, a fixed set
of i.i.d. data points D = {(xi, yi)}ni=1 is used to select f based on the empirical risk

R̂(f) = ED[L(f,x, y)] (1.3)

providing the name empirical risk minimization. For a training setD and hypothesis
space H, a learning algorithm AH selects a hypothesis f with low empirical risk

f̂ = AH(f) = argmin
f∈H

R̂(f) (1.4)

aiming for f to be as close as possible to f∗. In deep learning, ERM is cast as an op-
timization problem [40], whereby the hypothesis spaceH = {fθ : X → Y s.t. θ ∈ Θ}
is associated with a neural network architecture with parameter θ ∈ Θ. The learn-
ing algorithm aims to select a function with low risk R(fθ) by minimizing

f̂θ = argmin
fθ∈H

R̂(fθ) (1.5)

in turn solving the optimization problem

θ̂ = argmin
θ∈Θ

R̂(fθ) (1.6)

where the error function L is replaced by a surrogate loss amenable to optimization.
Throughout the thesis, the input space and output space are usually identified with
X = Rd and Y = Rk, while the parameter space with Θ = Rp, with p denoting the
number of learned model parameters (all weights and biases). Finally, in classifica-
tion settings, the ground truth label y ∈ [k] can be cast as an element y ∈ Rk with
y = ey denoting the y-th standard basis vector. The population and empirical risk
are defined using the 0/1 loss L0/1(ŷ, y) = [ŷ = y], with ŷ = argmaxj∈[k](fθ(x))j ,
while the surrogate loss L(θ,x, y) is typically given by cross-entropy

L(θ,x,y) = − 1
n

n∑
i=1

(
fθ(xi)y − log

k∑
j=1

exp(fθ(xi)j)
)

(1.7)
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or Mean Squared Error (MSE)

L(θ,x,y) = 1
2n

n∑
i=1
‖fθ(xi)− yi‖2 (1.8)

Generalization in the ERM setting is determined by how closely the learned model
behaves w.r.t. the optimal model outside of the training sample (in distribution,
out-of-sample generalization), and is measured via the excess risk

R(fθ)−R(f∗θ ) (1.9)

In general, attaining low empirical risk does not guarantee good generalization. In
fact, the empirical risk minimizer may overfit noise in the training data, and thus
perform worse on unseen data. Formally, for the case of MSE, the excess risk can
be decomposed as the sum of three terms

E(x,y),ε[(y − fθ(x))2] =
(
f∗θ (x)− E[fθ(x)]

)2 + E
[(
E[fθ(x)]− fθ(x)

)2]+ σ2 (1.10)

namely (squared) model bias, model variance, and irreducible error caused by the
noise ε. For a notion of model complexity – estimating the expressive power of a
given hypothesis by measuring a proxy quantity – the excess risk decomposition
allows to interpret the error committed by an empirical risk minimizer in terms of
the trade-off between model bias and variance [124]. A high-bias model may underfit
the training data by imposing too restrictive assumptions on the hypothesis class,
while a high-variance model may overfit the training data due to high expressivity.
As model complexity increases, the population error follows a U-shaped curve,
with lowest value observed at the optimal bias/variance trade-off. Historically, the
number of model parameters [125] and training epochs [119] have been used as an
intuitive proxy for complexity of linear regression models and neural networks.

Minimum-norm interpolators When overparameterized models are trained
until zero empirical risk, Equation 1.4 admits infinitely many solutions. Formally,
the level sets L−1(0) represent a collection of manifolds in parameter space, forming
connected components [126] each expressing interpolating solutions. The study of
interpolating solutions is thus typically restricted to certain classes of functions,
with the goal of accounting for inductive biases embedded in the network architec-
ture and learning algorithm. Ideally, according to the principle of Occam’s razor,
one seeks the model of least complexity with enough expressivity to explain the
data [127], for some measurable notion of “complexity”. Extending the ERM for-
malism, inductive biases are typically incorporated via a choice of norm in the hy-
pothesis spaceH, thus endowing it with a (complete) metric structure. Particularly,
for a given choice of norm ‖ · ‖H, one is interested in studying the minimum-norm
interpolator, namely the hypothesis satisfying

f̂θ = argmin
fθ∈H:
R̂(fθ)=0

‖fθ‖H (1.11)
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Hence, overparameterized learning is cast as a problem of joint interpolation and
regularization. As discussed in the previous section, regularization may come from
explicit mechanisms, or implicitly. For instance, gradient descent recovers the min-
imum `2 norm interpolator on convex losses when the parameter is initialized at
zero [128]. Similarly, the normal equations of linear regression provide the mini-
mum `2 norm interpolator, and gradient descent recovers the normal equations in
overparameterized linear regression [129]. In general, a priori from how a solution
to Equation 1.11 is found, the generalization ability of the minimum norm inter-
polator depends on the structure of the data, the (learned) features and the loss
function [44], [130]. A central concept in understanding the behaviour of minimum
norm interpolators is the double descent phenomenon [131], introduced below.

Double Descent

To account for the generalization ability of large overparameterized models, Belkin,
Hsu, Ma, et al. [131] propose the double descent curve of the test error, extending
the study of complexity beyond the bias-variance trade-off of classical models. If
the number of model parameters is interpreted as an intuitive complexity measure,
when model complexity increases the test error is observed to follow the classical
bias/variance trade-off curve, peaking when the resulting model is complex enough
to perfectly fit the training data. The smallest such model is known as the in-
terpolation threshold along the model-scale axis. As model complexity increases
further, the test error decreases a second time, extending classical analysis to the
overparameterized regime, whereby models operate by interpolating the training
data. Double descent, also called benign or harmless overfitting, has been widely
studied for overparameterized linear regression, both in the finite [132]–[134] and
asymptotic [135] regime as well as in the kernel setting [44]. The phenomenon
has also been consistently reproduced experimentally for deep learning on natural
data [136]. However, a full theoretical characterization for finite-width networks is
still missing. In the following, the formalism of linear regression is used to frame
the research questions explored for deep networks in the thesis.

Insights from Overparameterized Linear Regression

The overparameterized linear regression problem asks to recover the unknown pa-
rameter θ∗ ∈ Rd given n d-dimensional i.i.d. observations X ∈ Rn×d as well as
noisy targets y = Xθ∗ + ε ∈ Rn, for d � n. The noise ε is assumed to originate
from an isotropic normal distribution ε ∼ N (0, Inσ2) independent from X, with
variance σ2. The minimum `2 norm interpolator solving the search problem

θ̂ = argmin
θ∈Rd

s.t. Xθ=y

‖θ‖2 (1.12)



1.1. ON THE ILL-POSED NATURE OF DEEP LEARNING 11

is given in closed-form by the normal equations [124]

θ̂ = XT
(
XXT

)−1y (1.13)

For unseen (x, y), the ideal interpolator θ∗ attains minimum error, with excess risk

R(θ̂) = Ex
[(

xT (θ∗ − θ̂)
)2] (1.14)

Let Σ = Ex[xxT ] denote the data covariance, assuming centered data. Bartlett,
Long, Lugosi, et al. [133] decompose the excess into [133]

Eε[R(θ̂)] ≥ θ∗TBθ∗ + σ2 tr(V ) (1.15)

for

B =
(
Id −XT (XXT )−1X

)
Σ
(
Id −XT (XXT )−1X

)
(1.16)

V =
(
XXT

)−1
XΣXT

(
XXT

)−1 (1.17)

whereby both bias B and variance V depend on the data covariance Σ, which effec-
tively controls harmless interpolation in the overparameterized regime. Specifically,
the ability of interpolators to generalize to unseen data whilst interpolating noise
ε is determined by the structure of the problem, governed by Σ, as well as by how
signal and noise are encoded in the parameter θ̂. How Σ affects generalization in
the interpolating regime has been object of active research [132], [133], [135], [137],
[138]. In the random feature setting, if the data has independent sub-Gaussian
rows [53], [132], as d increases, then the contribution of the variance term to the
excess risk in Equation 1.15 scales as nσ2

d , thereby reducing the impact of the noise
variance σ2. Finally, the contribution of the bias term – measuring the deviation
of the solution θ̂ from the ideal interpolator θ∗ – is controlled by the alignment of
θ̂ with the covariance Σ eigenspaces. In fact, if the signal is encoded in the top
eigendirections of θ̂, then overparameterization controls the bias by distributing
the noise over the remaining eigendirections [132]. Moreover, if the data covariance
has power-law eigenspectrum, the ideal interpolator can be manually constructed
as the one encoding the signal in the top eigenspaces of θ̂, and the noise in the tail
of the eigenspectrum [133], ensuring that both bias and variance decrease, when-
ever d � n. In fact, for infinite dimensional data, it can be shown that this form
of interpolator guarantees optimal performance [138]. The present short overview
of double descent in linear regression highlights a few important messages. First,
minimum norm interpolation does not a priori guarantee benign overfitting, and
the phenomenon depends on the degree of overparameterization (growth of d w.r.t.
n). Second, harmless interpolation is determined by the structure of the learner,
i.e. whether the minimum norm interpolator is able to separate signal from noise so
that the latter is distributed over the tail of the eigenspectrum. Importantly, these
observations have been reproduced also in the kernel setting [47], substantiating the
idea that the structure of the learner matters. Therefore, in order to understand
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generalization in deep learning in the feature rich setting, three components are of
interest.

Research Question 1.1.2 (Open questions).

1. Formalize and study a data-dependent notion of complexity for non-linear
models in relation to interpolation.

2. Understanding the mechanisms constraining said complexity for interpolating
models.

3. Understanding how model size affects complexity, in relation to the mecha-
nisms controlling it.

The following section concludes the introduction by presenting the challenges asso-
ciated with each of the above open questions, and how the present thesis contributes
towards addressing them.

1.2 Challenges and Research Questions

Generalizing the above framework to deep networks in the non-asymptotic setting
poses several challenges. Referring to Equation 1.12, the problem of minimum-norm
interpolation for deep networks is formulated as

f̂θ = argmin
θ∈Θ s.t.

L0/1(fθ,X,y)=0

‖fθ‖ (1.18)

for some appropriate functional norm ‖fθ‖, to be identified. The task involves
several sub-questions, detailed below.

I. The hypothesis space is now a more general functional space H = {fθ : Rd →
Rk for θ ∈ Θ ⊆ Rp}, dependent on the model architecture and choice of
activation function. Crucially, in contrast to linear regression, the input data
dimensionality d remains fixed as model size p varies.

II. Interpolation is now attained non-linearly, and beyond the training data the
learned model function is potentially affected by instability, analogously to
the Runge phenomenon for polynomial fitting [139].

III. For an error function L(fθ,x, y), the search for optimal parameters entails
navigating a non-convex loss landscape, whereby curvature is governed by the
Hessian H = E(x,y)

∂2

∂θi∂θj
L(fθ,x, y), rather than the data covariance Σ (which

now has fixed dimensionality).
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IV. The learning problem depends on the loss landscape curvature as well as pa-
rameter initialization. Studying emerging regularization should account for
the interaction between optimizer and model architecture.

V. Implicit regularization of the learned hypothesis fθ should involve an appro-
priate functional norm ‖fθ‖ on H (interpreted as a metric space), in turn
entailing integration

∫
Ω ‖fθ‖ over the unknown data distribution (or a subset

of its support), with Ω ⊂ Rd denoting the distribution support.

VI. Finally, as opposed to linear regression, a closed-form solution for the gener-
alization error, as well as for the minimum norm interpolator, is a priori not
available, requiring different strategies to attack the problem.

The present thesis studies the above research questions through the lens of smooth-
ness of neural networks’ model functions fθ w.r.t. their inputs – a notion related
to Lipschitz continuity, in turn representing bounded variation for continuous func-
tions – for which there exists K > 0 such that

‖f(x1)− f(x2)‖q ≤ K‖x1 − x2‖p ∀ x1,x2 ∈ Rd (1.19)

where ‖ · ‖q and ‖ · ‖p respectively denote output-space and input-space norms.
The main goal of the thesis is to develop a notion of regularization generalizing
the case of overparameterized linear regression to hypothesis spaces over non-linear
functions, accounting for the model architecture, and tracking double descent.
The notion of minimum norm interpolation also appears in theoretical studies of
SSL, a wide family of unsupervised representation learning algorithms that cir-
cumvent the need for labelled data by learning model functions which attempt to
maximize invariance to perturbations of the input. The invariance-based nature of
SSL algorithms intimately connects them to metric properties of the data, connect-
ing invariance-based learning objectives to local smoothness of the model function.
Building on this connection, the thesis concludes by investigating implications of
its findings on supervised learning to the SSL setting, in relation to robustness of
learned representations.

1.3 Contributions of the Thesis

The following presents the thesis contributions, in relation to the above open ques-
tions. Focusing on the hypothesis class of networks equipped with the Rectified
Linear Unit (ReLU) activation function (Problem I), Paper A studies emerging
regularity of hypotheses expressed in practice, in relation to estimates of expres-
sivity of the hypothesis class. Paper B-C focus on the input-space geometry of
interpolation (Problem II) in relation to double descent, by studying the loss land-
scape in Paper B and the output (logit) space of neural networks in Paper C.
Exploring in more detail the hypothesis space (Problem I), Paper C discusses
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the role of hierarchical representations in relation to interpolation of the train-
ing data. Furthermore, mechanism of implicit regularization are related to the
curvature of parameter space (Problem III), as well as the interaction between gra-
dient descent and the model architecture (Problem IV). Taken together Papers
A-C suggest a notion of regularization that generalizes the problem of interpola-
tion+regularization from linear regression to non-linear functional spaces (Prob-
lem V). Finally, Paper D adopts the metrics developed in Paper C to study the
geometry of representations learned with SSL on vision tasks, in relation to rep-
resentation robustness, highlighting that current SSL methods operate in a regime
compatible with underparameterized supervised learning. Paper E extends the ob-
servations by studying Out-of-Distribution (OOD) generalization for SSL methods
based on data-augmentation, observing that OOD robustness behaves in keeping
with scaling laws for underparameterized supervised learning [38].

List of Included Papers
This thesis is based on the following papers:

A: M. Gamba, A. Chmielewski-Anders, J. Sullivan, H. Azizpour, M. Björman.
Are all Linear Regions Created Equal? In ‘International Conference
on Artificial Intelligence and Statistics (AISTATS)’ (pp. 6573-6590).
PMLR. 2022.

B: M. Gamba, E. Englesson, M. Björkman, H. Azizpour. Deep Double
Descent via Smooth Interpolation. In ‘Transaction on Machine Learn-
ing Research’. 2023.

C: 1 M. Gamba, H. Azizpour, M. Björkman. On the Lipschitz Constant
of Deep Networks and Double Descent. In ‘34th British Machine Vision
Conference (BMVC)’. 2023.

D: M. Gamba, A. Ghosh, K. K. Agrawal, B. A. Richards, H. Azizpour,
M. Björkman. Different Faces of Model Scaling in Supervised and Self-
Supervised Learning. In ‘ICLR Workshop on Bridging the Gap Be-
tween Theory and Practice’. 2024

E: M. Gamba, K. K. Agrawal, A. Ghosh, B. A. Richards, H. Azizpour,
M. Björkman. When Does Self-Supervised Pre-Training Yield Robust
Representations? Preprint. 2024

1The version included in the thesis corrects errata of the published paper.
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itly Regularizes Input-Space Smoothness 2. In ‘NeurIPS Workshop on
Interpolation Regularizers’. 2022.
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2This is a preliminary version of Paper C.





Chapter 2

Geometry of Interpolation in Deep
Learning

The thesis’ exploration of effective complexity of deep networks begins by studying
the hypothesis space of models equipped with the ReLU activation function [140],
x 7→ ϕ(x) = max(0, x) for x ∈ R (problem I.).

2.1 Hypothesis Space of ReLU Networks

Feed-forward ReLU networks fθ : Rd → Rk compose l affine layers of the form

A`(x) = θ`x + b` (2.1)

with the element-wise application of ReLU, for x ∈ Rd`−1 , θ` ∈ Rd`×d`−1 , b` ∈ Rd` ,
` ∈ [l] =: 1, . . . , l; d0 := d, and dl := k. By hierarchically composing affine layers
with the continuous piece-wise linear function ϕ, ReLU networks express continuous
piece-wise affine functions of the input data x ∈ Ω ⊆ Rd known as affine spline
operators [141]

f `(x) = (A` ◦ ϕ ◦A`−1 ◦ . . . ◦ ϕ ◦A1)(x) (2.2)
with f l(x) = fθ(x) denoting the full network. For each layer ` = 1, . . . , l, the affine
function A` defines a collection of d` hyperplanes {x ∈ Rd`−1 : θ`ix + b`i = 0} in its
preactivation space. When ` layers are composed hierarchically, the hyperplanes
defined by layer ` cut through those defined by earlier layers j [142], for j =
1, . . . , ` − 1. In the network’s input space Ω, each hidden unit f `i defines a bent
hyperplane [76] h`i = {x ∈ Ω : f `i (x) = 0} for i ∈ [d`], inducing an arrangement

C = Ω r
⋃
`∈[l]

⋃
i∈[d`]

h`i (2.3)

The resulting configuration partitions the input domain Ω into disjoint convex
polytopes P = {Pε}ε known as activation regions [142], [143], with C = ·∪εPε.

17
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Importantly, on each polytope Pε, the network fθ computes a single affine function

A(ε)(x) = θ(ε)x + b(ε) (2.4)

so that
fθ(x) =

∑
ε

(
θ(ε)x + b(ε)

)
1Pε(x) ∀x ∈ Ω (2.5)

whereby 1Pε
(x) = [x ∈ Pε] denotes the indicator function. For each activation

region Pε, the corresponding affine function can be computed in closed form [141]

A(ε)(x) = θl

( 1∏
`=l−1

θ`D`(x)
)

x

+ θl
l−1∑
`=1

(
`+1∏
j=l−1

θjDj(x)
)(
D`(x)b`

)
+ bl

(2.6)

where D`(x) is a d` × d` diagonal matrix, with D`
ii(x) = 1 if f `i (x) > 0 and 0

otherwise. The concatenated patterns (D1
11(x), . . . , D1

d1d1
(x), . . . , Dl

dldl
(x)) provide

a unique signature identifying the activation region of x, known as binary activation
pattern [76], [144]. Clearly, points within the same activation region share the same
activation pattern, and activation regions are indeed defined as the geometric locus
of points sharing the same activation pattern.

Estimating the Partition P

Finally, the present introduction to the geometry of ReLU networks concludes by
discussing the problem of computing the partition P. For compact sets Ω ⊂ Rd,
corresponding to bounded input domains (e.g. RGB pixels), the activation region
partition P can be computed analytically by tracking, for each layer ` ∈ [l] and for
each hidden unit i ∈ [d`], how the affine function f `i cuts through existing activa-
tion regions defined by earlier layers [76], [145]. Alternatively, a mixed-integer pro-
gramme can be defined and solved numerically, as proposed in [146] (Theorem 11).
To build some intuition about the complexity of estimating P for m-dimensional Ω,
one can rely on a classical result from Zaslavsky on standard hyperplane arrange-
ments (l = 1) [147], for which, given n hyperplanes in general position in Rm

|P| =
m∑
j=0

(
n

j

)
(2.7)

Hence, the complexity of exact region counting algorithms (for single layer net-
works) roughly scales as a degree-m polynomial in the number of hyperplanes n,
thus suffering from the curse of dimensionality for high dimensional Ω [148].
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Expressivity of ReLU Networks

Affine spline operators parameterized by ReLU networks are endowed with universal
approximation ability of continuous functions [149]–[151]. In function approxima-
tion problems, the ability of a ReLU network to represent functions of non-zero
curvature is tied to its capacity of expressing many activation regions [91], [152].
Particularly, in classification tasks, non-linear expressivity allows to model complex
decision boundaries, for data that is not linearly separable. Non-linear expressivity
of a ReLU network can be theoretically quantified by estimating the number of
activation regions that the architecture can express on the input domain. Several
works propose upper [144], [146], [153], [154] as well as lower bounds [142], [143] on
the number of regions expressed by different network architectures, interpreted as
a measure of the theoretical expressive power of a model. Importantly, this avenue
of research allows to understand the theoretical benefits of parameterizing a class
of functions f : Rd → Rk of fixed domain/codomain by using deeper networks, with
exponential gains in expressive power compared to shallower models [91], [152].
Subsequent works shift the focus from theoretical expressivity of a deep architec-
ture to exploiting the number of activation regions in order to estimate complexity
of networks trained in practice. Importantly, for ReLU networks at random initial-
ization [7], Hanin and Rolnick [76] theoretically show that the density of activation
regions on compact domains Ω ⊂ Rd is bounded in expectation by a factor that
depends polynomially on the number of neurons z =

∑l
`=1 d`, and exponentially

on the input dimensionality d, whenever z ≥ d, in keeping with Zaslavsky’s theo-
rem for standard hyperplane arrangements [147]. Intriguingly, the bound does not
depend on the network architecture, but only on the total number of neurons.

2.2 Effective Complexity of Interpolating Affine Splines

Studies discussed thus far treat activation regions expressed by a fixed architec-
ture uniformly, implicitly assuming that partitions P of Rd counting higher region
density are associated with a model function fθ of higher non-linearity. However,
as intuitively depicted in Figure 2.1, for affine splines of non-vanishing curvature,
effective model non-linearity also depends on the functions Aε(x) expressed by each
affine component. In line with this observation, Paper A studies effective com-
plexity of deep ReLU networks trained in practice, by contrasting the density of
activation regions to the effective non-linearity of the corresponding affine spline.

Research Question 2.2.1. Is the density of activation regions a reliable estimator
of model non-linearity?

Specifically, estimating effective non-linearity is decomposed into two tasks:

Task 1. Exactly computing the partition P on a compact subdomain of Ω.
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Figure 2.1: For affine spline operators of non-vanishing curvature (blue line) with cor-
responding activation regions (projections onto the x-axis, with boundaries marked by
blue triangles), the same number of activation regions may express functions of
different local non-linearity (green area).

Task 2. Measuring effective model non-linearity by studying the affine components
A(ε)(x) on P. Again with reference to Figure 2.1, the non-linearity mea-
sure should account for the slope θ(ε) and the offset b(ε) of each affine
component, as well as the volume over which the function A(ε) is defined.

Additionally, the contribution of certain activation regions to a model’s non-linearity
may be negligible. In fact, large networks can be successfully distilled into smaller
models [155], and a large fraction of model parameters can be pruned without af-
fecting model performance [156]. This observation motivates the following question.

Research Question 2.2.2. In the interpolating regime, the assumption that each
activation region equally contributes to a model’s effective non-linearity may not
hold. How does model non-linearity scale vis-à-vis overparameterization?

Indeed, while a higher number of activation regions is indicative of a model ex-
pressing a relatively more fine-grained partition of the input domain, neighbour-
ing activation regions may approximately express the same affine function [157],
thereby showing reduced local non-linearity. Such redundancy is expected to be
exacerbated in the overparameterized regime, which is the focus of Paper A.
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Activation Region Discovery
The first step towards precisely quantifying non-linearity of a ReLU network trained
in practice is computing the partition P. As seen in the previous section, estimating
the partition P of Ω is computationally intractable for large networks and high-
dimensional input spaces. Several works thus restrict the computation to bounded
one-dimensional [76], [99], [144], [146] or two-dimensional domains [76], [145], [158].
Formally, if Γ ⊂ Ω is a low-dimensional sub-domain of the input space, the problem
is restricted to measuring non-linearity over B = {Pε ∩Γ : Pε ∈ P}. Particularly, if
Γ is convex, then by convexity of each Pε, B is itself an activation region partition.
Finally, a numerical alternative to exactly computing B can be found in generating
a grid of equally-spaced input points (e.g. along a trajectory or plane in Rd), and
counting the number of unique activation patterns observed [99]. This method,
depicted by the red triangles in Figure 2.1 suffers from two main drawbacks, namely
the need to know a priori an upper bound on the number of activation regions one
expects to encounter (in order to select how fine-grained the sampling is), whilst at
the same time incurring the risk of undersampling regions smaller than the selected
precision. Particularly, grid-based sampling does not allow to precisely estimate
the activation region boundaries within B, thus not fulfilling Task 1.

Contribution: Activation Region Discovery Algorithm
In order to scale computation to ReLU networks used in practice, Paper A con-
siders one-dimensional compact domains of Rd, parameterized by piece-wise linear
trajectories. The first contribution is an activation region discovery algorithm, al-
lowing to compute the partition B along a specified direction d, based at a point x0.
In a nutshell, given a starting point x0 belonging to activation region B0, and an
endpoint xn ∈ Bn, the algorithm computes the displacement λ0 to cross the closest
boundary of B0 along the direction vector d = xn − x0 ∈ Rd. The procedure is
iterated until the region Bn containing point xn is reached.

Preconditions By recalling that each layer ` = 1, . . . , l defines d` hyperplanes
{x ∈ Rd`−1 : θ`ix + b`i = 0} in its preactivation space, let x` = ϕ(θ`x`−1 + b`)
denote the post-activation of the `-th layer, with x0 := x ∈ Rd. For xt ∈ Rd, let
x`t = x`(xt) denote the image of xt in Rd` , for t = 0, . . . , n. Then, each hyperplane
i ∈ [d`], defines a positive halfspace θ`ix`−1 + b`i > 0, as well as a negative one.
To denote this, let sign(θ`ix`−1

t + b`i) = 1 if x`−1
t lies in the positive halfspace

of the i-th hyperplane at layer `, and sign(θ`ix`−1
t + b`i) = 0 if x`−1

t lies in the
negative halfspace. The case for which x`−1

t lies on the hyperplane is discussed
separately. Finally, let d`−1

t =
∏`−1
j=1D

j(xt)θjd denote the direction d projected
onto the preactivation space Rd`−1 , with Dj(xt) defined according to Equation 2.6.

Iteration At iteration t, the smallest displacement λt to cross the boundary of
Bt is computed by solving the linear problem defined in Equation 2.10, for each
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Figure 2.2: Iteration of the activation region discovery algorithm along a direc-
tion vector connecting two input data points.

layer ` = 1, . . . , l, and for each hyperplane i = 1, . . . d`.

z = sign
(
θ`ix`−1

t + b`i
)
∈ {0, 1} (2.8)

λ`i = argmin
λ∈R∪{±∞}

(−1)z
(
θ`i (x`−1

t + λd`−1
t ) + b`i

)
≥ 0 (2.9)

= argmin
λ∈R∪{±∞}

(−1)zλ ≥ (−1)z+1 θ
`
ix
`−1
t + b`i
θ`id`−1 (2.10)

If θ`ix`−1
t + b`i = 0, then x`−1

t lies on the i-th hyperplane of layer ` and therefore
moving along d requires computing the shortest distance to all other hyperplanes.
Hence, all λ`t = 0 are discarded by the algorithm. Finally, the minimum non-zero
displacement λt is selected, and a step is taken in the direction d

λt = min
`∈[l]
i∈[d`]

{λ`i : |λ`i | ≥ τ} (2.11)

xt+1 = xt + λtd (2.12)

The procedure halts whenever the endpoint xn is reached.

Numerical considerations In order to execute the algorithm with finite preci-
sion (e.g. 64-bit) a sensitivity threshold 0 < τ � 1 is defined to ensure that an
activation region boundary is always crossed at each iteration t. This is reflected in
Equation 2.11. Figure 2.2 shows one iteration of the algorithm, for a straight line
in input space connecting two samples of the CIFAR-10 dataset [159]. Importantly,
the algorithm can be efficiently computed with a single forward pass through the
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network for each iteration t, and by solving the linear problem 2.10 iteratively for
each layer. The computational complexity O(ln) scales linearly with the number of
regions discovered and the number of layers l. Importantly, the linear programme
can be easily batched to process an entire layer at a time, as well as multiple inputs
x0 and directions d, making it possible to study large convolutional networks such
as ResNet [7] and VGG [160] on high dimensional input datasets. Indeed, at the
time of publication, Paper A presented the first large-scale study of activation
regions for ResNets and large ConvNets.

Implications If the direction d is parameterized by a line path γ : I = [0, 1]→ Rd,
with γ(s) = x0 + sd, for 0 ≤ s ≤ 1 then, by convexity of activation regions, P in-
duces a partition BI = {st ∈ I : 0 = s0 < . . . < sn = 1} of I, dividing I into
intervals It = [st, st+1], with |It| = λt corresponding to the normalized length of
region Bt along d. Importantly, this allows to compute and cheaply store the en-
try and exit points of γ into each activation region along d. In the following, the
quantities are used to introduce a simple measure of non-linearity of a network.

Contribution: Effective Non-linearity Measure
A second contribution of Paper A is a non-linearity measure tailored for inter-
polating affine spline operators. For high-dimensional input spaces, the measure
implicitly relies on the manifold hypothesis [161], [162].

Definition 2.2.3 (Manifold Hypothesis). Natural data lies in proximity of low-
dimensional manifolds embedded in the Euclidean input space.

Intuition Let fθ denote a ReLU network trained to perfectly fit a dataset D =
{(xi, yi)}ni=1, so that the train error EDL0/1(θ,x, y) = 0. For a training point
xi ∈ D, let x̃i denote a second data point, lying in proximity of xi. Then, according
to the manifold hypothesis, if d = x̃i − xi with small enough ‖d‖2, then d is
tangential to the data manifold at xi. Then, interpolation of x̃i can be attained by
the affine function A(x) = θx+b expressed by fθ at xi, so that fθ(x̃i) = fθ(xi+d) =
θ(xi + d) + b. Hence, the minimum norm affine spline interpolator should express
a function of vanishing curvature between xi and x̃i. Conversely, for a network
fθ interpolating a dataset D, by using perturbed points x̃i it is possible to probe
the network locally to each xi to measure how far it deviates from an interpolator
with locally vanishing curvature. Figure 2.3 presents an illustration of the method:
for each pair of values fθ(xi), fθ(x̃i) ∈ Rk (denoted by green dots in the two top
panels), the non-linearity of the model between the corresponding points xi, x̃i can
be estimated by measuring the model’s deviation (shaded green area) from a locally
flat interpolator (green line), defined in proximity of the training data xi ∈ D.

Non-linearity measure Let At(x) = θtx + bt denote the affine function ex-
pressed by fθ on the activation region containing point xt. For two endpoints x0 ∈ D
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Figure 2.3: Proposed non-linearity mea-
sure, capturing local curvature by comput-
ing the distance from a local affine spline in-
terpolator of zero curvature.
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and x̃0 ∈ Rd, let γ : I → Rd be the line path parameterized by γ(s) = x0 + sd, for
d = x̃0 − x0 and 0 ≤ s ≤ 1. Finally, let Ar(x) = θrx + br be the affine function on
the activation region of x̃0 and define the function a(x) : Rd → Rk s.t.

a(γ(s)) := (1− s)(θ0γ(s) + b0) + s(θrγ(s) + br) (2.13)

Definition 2.2.4 (Absolute deviation along path). Using Equation 2.13, local non-
linearity of an interpolating affine spline fθ along γ can be measured by∫

γ

‖fθ − a‖ (2.14)

Using the proposed activation region discovery algorithm, absolute deviation along
γ can be efficiently computed as

r∑
t=1

∫ st

st−1

‖θtγ(s) + bt − a(γ(s))‖‖γ̇(s)‖ds (2.15)

It is worth observing that, since st−st−1 = λt, absolute deviation takes into account
the length of activation regions At along d. Furthermore, in contrast to previous
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studies of function variation [99], the proposed measure takes into account non-
linearity arising from the bias parameters, as well as variation of the visited affine
functions, fulfilling Task 2. Indeed, ReLU networks with fixed random weight ten-
sors and learned biases are universal approximators [163]. For each training point
xi, the measure can be trivially extended to compute non-linearity along piece-wise
linear paths γi = ∪pj=1γ

j
i connecting sequences of points xi =: x̃0

i , x̃1
i , . . . , x̃

p
i . For

each training point xi and piece-wise linear path γi, a single scalar non-linearity
measure can be aggregated by computing the expected absolute deviation

Exi∼D
1

len(γi)

∫
γi

‖fθ − a‖ (2.16)

Disentangling Non-linearity from Region Density

The proposed measure and activation region discovery algorithm allow to disentan-
gle effective non-linearity from the underlying partition P in proximity of the train-
ing data, for networks trained in practice. Importantly, this enables the study of
the effect of overparameterization on spline affine operators expressed by ReLU net-
works operating in the interpolating regime. In a series of experiments, ConvNets
and ResNets are trained to interpolate tasks of increasing complexity, whereby the
network would benefit from expressing a more fine-gradient activation region parti-
tion. Importantly, since the models considered are trained until zero training error
is reached, underfitting can be ruled out as a confounding factor whenever reduced
non-linearity is observed. Key experimental observations are summarized below.

• For models trained to interpolate training data with a fraction of the labels
randomly perturbed (from 20% to 100% perturbed samples) [78] absolute de-
viation is able to distinguish affine operators interpolating increasingly noisy
data, while activation region density provides an unreliable predictor of effec-
tive non-linearity. Similarly, absolute deviation is able to distinguish model
functions smoothed with training-time data augmentation from those trained
without data augmentation, while activation region density largely fails.

• Activation region density poorly correlates with absolute deviation, highlight-
ing that effective model non-linearity is poorly explained by the underlying
activation regions partition in the overparameterized setting. Importantly,
while prior work identifies reduced effective model complexity with expected
activation region density being lower than what suggested by theoretical ex-
pressivity bounds [76], Paper A observes only weak correlation between ac-
tivation region density and effective non-linearity.

• The proposed non-linearity measure undergoes double descent when model
size is controlled (Figure 2.4). Crucially, while activation region density mono-
tonically increases with model size, effective non-linearity is reduced in the
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overparameterized regime, undergoing a phase transition near the interpo-
lation threshold. Hence, while the density of activation regions increases
for larger models, neighbouring activation regions approximately express the
same affine function along data-driven trajectories.

• Finally, taken together, the above observations provide empirical evidence
in support of the VC-dimension not being suited to study deep networks.
By recalling that, for a hypothesis class expressing (standard) hyperplane
arrangements, the VC-dimension scales like the number of cells in the ar-
rangement (in turn given by Zaslavsky’s theorem, c.f.r. Equation 2.7), and by
recalling that Hanin and Rolnick [76] provide depth-independent bounds on
the expected activation region density matching Zaslavsky’s theorem, then
Figure 2.4 suggests that the VC-dimension of the network monotonically in-
creases with model size, thereby failing to capture generalization.

The present fine-grained study of affine spline operators parameterized by ReLU
networks, vis-à-vis their implicit activation region partition, highlights that reduced
effective complexity in the overparameterized regime is associated with increased
local redundancy of activation regions, corresponding to reduced effective non-
linearity. The observation emphasizes the importance of variation-based measures
in understanding emerging regularity in the overparameterized regime. Referring
again to Figure 2.3, the proposed measure of non-linearity implicitly captures vari-
ation of ReLU networks from a locally flat interpolator across activation regions.
However, the measure does not distinguish non-linearity arising from small (but
frequent) oscillations of the model function from non-linearity due to high local
curvature. Paper B addresses this shortcoming by separately studying curvature
and function variation in input space, in relation to interpolation of noisy data.

2.3 Loss Landscape Geometry and Interpolation

The ability of deep networks to perfectly fit noisy training data while retaining
generalization on i.i.d. test data suggests that generalizing models fit noisy samples
whilst correctly predicting the ground truth when extrapolating away from those
points. In other words, a generalizing model is able to deviate from the ground truth
function locally to a noisy training point, without affecting the model’s predictions
outside of a neighbourhood of the noisy data. This observation is intuitively de-
picted for a regularized interpolating polynomial in Figure 2.5a. To characterize this
behaviour for deep networks, Paper B is concerned with studying the geometry of
interpolation in the presence of noisy training targets (problem II.).

Geometry of Interpolation

To study interpolation for deep networks, this section draws inspiration from the
function approximation literature, identifying useful tools to analyze interpolation
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Figure 2.5: Intuition from polynomial interpolation. a) A regularized polynomial
of high degree interpolating noisy training data without considerably deviating from the
underlying ground truth signal. b) The Runge phenomenon, observed for unregularized
polynomials interpolating uniformly-spaced data. c) High-degree interpolating polynomial
exhibiting sharp variation in a neighbourhood of each interpolated point. Paper B argues
that overparameterization implicitly controls the geometry of interpolation. While models
near the interpolation threshold behave consistently with the polynomial case b), large
networks smoothly interpolate both clean and noisy data, and thus improved generalization
in the interpolating regime is tied to smoothness of the loss w.r.t. the input variable.

geometry. A rich class of non-linear interpolators is provided by polynomials, by
virtue of the Stone-Weierstrass theorem [164].

Theorem 2.3.1 (Stone-Weierstrass approximation theorem [164]). For a contin-
uous function f : [a, b]→ R, for every ε > 0, ∃ a polynomial pn of degree n s.t.

sup
x∈[a,b]

|f(x)− pn(x)| < ε (2.17)

For a set of interpolation points {(xi, f(xi))}m+1
i=1 , a polynomial degree n and a poly-

nomial basis are typically chosen, allowing to construct the interpolating polynomial
minimizing a particular notion of error. An important consequence of the choice of
basis is the Runge phenomenon [139], depicted in Figure 2.5b, where a m-degree
polynomial interpolating m + 1 equidistant points oscillates near the endpoints of
the interval. Another interesting case is noted in Figure 2.5c, whereupon a high-
degree polynomial interpolates the noisy data while showing high-norm gradients,
thereby attaining a poor fit outside of the interpolation points. As in the general
case, the choice of norm imposes a prior on the class of interpolators, restricting the
solution space. If the ground-truth function admits a k-th order derivative, then
the best approximation error is controlled by |f(x)−pn(x)| ≤ π

2
1

(n+1)k |f (k)|. Then,
to control the gradients and attain good extrapolation, a common solution is to in-
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crease the polynomial degree and impose smoothness constraints of the form [165]

1
2m

m∑
i=1

(f(xi)− pn(xi))2 + λ

∫ b

a

|p(k)
n (x)|dx (2.18)

Similarly, spline interpolators a(x) admit a smoothing spline formulation, defined
via roughness (curvature) penalization [166]

1
2m

m∑
i=1

(f(xi)− a(xi))2 + λ

∫ b

a

f ′′(x)2dx (2.19)

typically imposed via Lagrangian multipliers λ ∈ R. Figure 2.5a shows an exam-
ple of a high-degree polynomial fitted with smoothness regularization. Building on
the polynomial intuition, a natural question is thus how interpolation is attained
by overparameterized deep networks. Possible scenarios include models character-
ized by high sensitivity (Figure 2.5c), unstable functions analogous to the Runge
phenomenon (Figure 2.5b) or smooth interpolators akin to regularized polynomials
(Figure 2.5a). To investigate the phenomenon, Paper B presents a study of the
input-space geometry of the loss landscape for models interpolating noisy datasets.
Importantly, the following question is explored.

Research Question 2.3.2. What is the effect of overparameterization on the loss-
landscape geometry of interpolating models? How do interpolating models behave
locally to interpolated samples with clean and corrupted targets, respectively?

Measuring Variation
For a network fθ of trained parameter θ, geometry of interpolation is studied by
exploring the input-space landscape of the loss L(x, y) := Lθ(x, y) for fixed θ. Local
smoothness of the loss landscape is measured by computing the Jacobian norm

J(x, y) = ‖J(x, y)‖2F := ‖∇xL(x, y)‖2F (2.20)

measuring sensitivity of the loss to infinitesimal perturbations local to x. To capture
local curvature at a point, the Hessian norm is computed via the functional

H(x, y) =
∥∥∥ ∂2

∂x∂xT L(x, y)
∥∥∥2

F
(2.21)

Again appealing to the manifold hypothesis (Definition 2.2.3), Hessian estimation
is restricted to curvature directions near the data manifold. Inspired by the Hes-
sian eigenmaps embedding method [167] as well as the rugosity estimator [168],
computation of the Hessian norm at each point (xi, yi) is restricted to directions
tangential to the data manifold at xi. Formally, for any point (xi, yi) with cor-
responding Jacobian J(xi, yi), m neighbours xi + δuj are generated by randomly
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Color augmentations

Figure 2.6: Random
colour augmentations
used to estimate the
tangent Hessian norm.
Each row represents a set
of augmentations, with
the first image showing
the corresponding base
sample.
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Figure 2.7: Geodesic MC integration. For each
base training point, p paths approximating on-manifold
geodesics are formed by connecting a sequence of augmen-
tations of increasing strength, covering volumes of increas-
ing size in the loss landscape around each training point.
The goal is to compare points that are a) sharply interpo-
lated from those that are b) smoothly interpolated. For
a base training point (blue star), each path γ joins dif-
ferent augmentations of the base sample for augmentation
strength k = 1, 2, 3, controlling the path length.

sampling a displacement vector uj using weak data augmentation, for j ∈ [m].
For each sampled uj , the tangent Hessian H(xi, yi) projected along the direction
xi + uj , is estimated via the finite difference 1

δJ(xi, yi)− 1
δJ(xi + δuj , yi).

H(xi, yi) = 1
mδ2

m∑
j=1

∥∥J(xi, yi)− J(xi + δuj , yi)
∥∥2
F

(2.22)

Weak colour transformations are employed to sample neighbouring points xi + uj ,
since (weak) photometric transformations are guaranteed to be fully on-manifold.
A visualization of the colour transformations is presented in Figure 2.6.

Contribution: Geodesic Monte Carlo Estimator
To characterize the loss landscape geometry, the infinitesimal measures of Equa-
tions 2.20 and 2.22 are extended to volumetric measures centered at each interpo-
lated point xi, with the goal of capturing smoothness and curvature when traveling
away from the point. The procedure leverages Monte Carlo (MC) integration and
involves two steps, namely integrating the Jacobian and tangent Hessian norms over
geodesic paths, and averaging the per-path measures to obtain a volume estimate.
Figure 2.7 illustrates the method, which allows to distinguish between a sharp loss
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landscape at each point (Figure 2.7a) – characterized by high local curvature and
high loss variation – and a wide loss landscape, with lower curvature (Figure 2.7b).

Generating Paths Let Ts = {Ts : Rd → Rd}, represent a family of smooth
transformations (data augmentation) acting on the input space and governed by
parameter s, controlling the strength s = ‖s‖2 as well as the direction s

‖s‖2
of

the augmentation in Rd. In general, the parameter s, interpreted as a suitably
distributed random variable, models the randomness of the transformation. Ran-
domly sampling s yields a value sk corresponding to a fixed transformation Tsk

of strength sk. For instance, for affine translations, sk represents a random ra-
dial direction sampled from a hypersphere Sd−1 centered at xi, with strength sk
denoting the magnitude of the translation (e.g. 4-pixel shift). For photometric
transformations, sk may model the change in brightness, contrast, hue, and satura-
tion, with total strength sk. The generation of p on-manifold paths γji emanating
from xi, for j ∈ [p], proceeds as follows. First, a sequence of m + 1 strengths
s0 < s1 < . . . < sm is selected, with s0 = 0 denoting the identity transformation.
Then, a sequence of augmentations x0

i ≺ x1
i ≺ . . . ≺ xmi is joined into a piece-wise

linear path γji : [0, 1]→ Rd, with xki = Tsk
(x), using transformations Tsk

of increas-
ing strength s0, . . . , sm. Each path γji approximates an on-manifold trajectory by a
sequence of Euclidean segments xki x

k−1
i , for k = [m]. The maximum augmentation

strength sm controls the distance traveled from xi, while the numberm of strengths
used controls how fine-grained is the Euclidean approximation. Finally, for each
training sample, multiple paths Γi = {γji }

p
j=1 are generated by a new sequence

of transformations Ts0 , . . . , Tsm , obtained by sampling a corresponding sequence of
strengths s0, . . . , sm so that the respective magnitudes match for all p paths.

Near-Manifold Augmentations An important requirement for generating on-
manifold paths is that the sequence of augmentations x0

i ≺ x1
i ≺ . . . ≺ xmi should

lie in proximity of the corresponding base training sample xi, which is interpreted
as requiring that each xki is highly correlated with its predecessor xk−1

i . To achieve
this, a weak augmentation strategy proposed by Yu, Long, and Hopcroft [169] is
used, whereby each colour channel xic of the base training sample is factorized via
singular value decomposition xic = U ciD

c
iV

c
i , and a subset of the smallest singular

values is erased, producing a matrix D̃c
i of lower rank. The resulting xkic = U ci D̃

c
iV

c
i

constitutes the transformed input, visualized in Figure 2.8.

Volume integration Once a sequence of paths {γji }
p
j=1 is generated for xi, path-

based smoothness and sharpness are computed by integrating over each path γji ,
and normalizing the measure by the length len(γji ) of each path:

1
p

p∑
j=1

(
1

len(γji )

∫
γj

i

σ(x, yi)dx
) 1

2

(2.23)
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Figure 2.8: Strategy used to generate on-manifold paths. (a) Each row represents
SVD augmentations of increasing strength, with the first column representing the base
sample used to generate the corresponding augmentations in each row. (b) Average `2
distance from the base samples, for augmentations of increasing strength.

where σ represents an infinitesimal sharpness measure, namely the Jacobian and
tangent Hessian norm functionals at (x, yi). The same method can also be applied
to accuracy and cross-entropy loss to evaluate consistency and confidence of the
models predictions over volumes. Figures 2.7a and 2.7b illustrate geodesic MC
integration. For each training point, p geodesic paths are generated, each anchored
to the data manifold by m augmentations. Integrating infinitesimal measures over
each path returns a MC sample of sharpness along γji . Finally, volumetric sharpness
is estimated by MC integration over p samples. Importantly, the number p of paths
is fixed throughout all experiments, representing the number of MC samples for
volume-based integration. Finally, a scalar, mean-field estimate is obtained by
averaging over the training set D in Equation 2.25.

Definition 2.3.3 (Volume-based smoothness).

smoothness = 1
p
ED

p∑
j=1

(
1

len(γji )

∫
γj

i

J(x, yi)dx
) 1

2

(2.24)

= 1
np

n∑
i=1

p∑
j=1

(
1

len(γji )

∫
γj

i

J(x, yi)dx
) 1

2

(2.25)

An analogous construction provides volume-based sharpness, whereby the Jacobian
norm functional J(x, yi) is replaced with the tangent Hessian norm’s H(x, yi).
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Figure 2.9: a) Double descent curve for the test error for ConvNets trained on
CIFAR-10 with 20% noisy labels. b) Average metrics integrated over volumes of increasing
size. Volumes are denoted by the number k of weak augmentations used to generate each
geodesic path. All models are trained for 4k epochs.

Signatures of Overfitting

Equipped with the tools to probe the input-space geometry of the loss landscape,
Paper B presents a study of deep networks undergoing model-wise and epoch-
wise double descent [136] when trained on datasets with a fraction of the training
labels corrupted. Similarly to the experimental setting of Paper A, all explicit
regularization (batch normalization, weight decay, data augmentation, dropout,
etc.) is disabled in order to remove confounders, unless explicitly stated.

Loss Landscape Curvature as a Signature of Harmful Overfitting Fig-
ure 2.9 reproduces the double descent curve of the test error for a series of ConvNets
trained on CIFAR-10 [159] with 20% of the training labels randomly corrupted with
symmetric noise [78]. The smallest model size able to attain zero train error is
marked with a dotted vertical line and is called interpolation threshold [131]. Fig-
ure 2.9b presents training accuracy, cross-entropy, as well as volumetric smoothness
and curvature, each integrated over volumes of increasing size, respectively corre-
sponding to longer paths emanating from each base training sample. For each plot,
a volume of 0 indicates infinitesimal measures, where neither MC integration nor
geodesic integration are performed. All other volume sizes are marked by the num-
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Figure 2.10: Separation between clean and noisy samples. Average accuracy,
cross-entropy, Jacobian and Hessian norms integrated over volumes of increasing size (aug-
mentations per path) around clean (top) and noisy (bottom) subsets D.

ber k of augmentations used to construct the geodesic paths γji (c.f.r. Figure 2.7).
As model size grows, interpolating models are able to perfectly fit all training sam-
ples, predicting the interpolated label with high confidence, corresponding to low
cross-entropy loss at the training point (volume zero). When traveling away from
the interpolated training points (thus increasing integration volume), cross-entropy
loss, local sensitivity as well as curvature rapidly increase, with models near the
interpolation threshold rapidly losing accuracy and confidence akin to the polyno-
mial example of Figure 2.5c. This is accompanied by an increase in the test error,
thus exhibiting harmful overfitting [35]. Finally, large overparameterized models
are able to fit all training points with high accuracy and confidence, paired with a
smooth and flat loss landscape, similar to the regularized polynomial (Figure 2.5a).

Smooth Interpolation of Noisy Labels Next, the smoothness and sharpness
measures are computed separately on the fraction D̃ ⊂ D of noisily-labeled samples,
and on the clean samples Dr D̃. Figure 2.10 reports the loss landscape metrics for
clean samples (top row) and noisy samples (bottom row). First, small underfitting
models attain non-trivial generalization performance by fitting mostly the cleanly-
labelled samples, in line with studies showing that deep networks favour learning
samples in a specific order [37], [170]. Second, while cross-entropy at a point mono-
tonically decreases in the interpolating regime, both loss sensitivity and sharpness
peak near the interpolation threshold, even for infinitesimal volumes, with larger
peaks observed for incorrectly-labelled samples. Hence, whenever models are op-
erating near the interpolation threshold (as may be the case with large datasets
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Figure 2.11: Decoupling smoothness from generalization. Randomly selected
classes of CIFAR-100 are corrupted with asymmetric label noise, perturbing 80% training
labels within each class, for a total of 20% corrupted samples. This enables splitting the
test set classes into those associated with corrupted train samples and uncorrupted classes.

and large models), input space curvature may provide a signature of noisy samples
that should be discarded. Indeed, a recent work subsequent to Paper B uses the
observation to detect memorization at the end of training [171]. Finally, as mod-
els become largely overparameterized, both clean and noisy samples are smoothly
interpolated, with corrupted labels being confidently predicted over large volumes.

Impact of Asymmetric Noise Finally, asymmetric noise is employed to decou-
ple smooth interpolation from generalization, by training ResNets on CIFAR-100
with only selected classes randomly perturbed. Specifically, 20 randomly selected
classes of the CIFAR-100 training split are corrupted with asymmetric label noise,
perturbing 80% training labels within each class, for a total of 20% corrupted train-
ing samples. This modification of the training setup allows to split the test set into
classes that have been corrupted at training time, and unperturbed classes. Fig-
ure 2.11 presents the experimental results. Similarly to the symmetric noise case,
overparameterized models present a smooth and flat loss landscape around clean
(top row) and corrupted samples (bottom row), with highest peaks in sharpness
around corrupted samples near the interpolation threshold. At test time, the double
descent trend for the test error is still clearly observed for the unperturbed classes,
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while the phenomenon is removed from the heavily corrupted classes. This observa-
tion shows that large overparameterized networks express smooth interpolators, and
that double descent occurs only when smoothness is aligned with generalization.
After establishing that large overparameterized networks express smooth interpo-
lators of the training data, akin to (explicitly regularized) smoothing splines and
roughness-constrained polynomials, several questions remain open.

Research Question 2.3.4 (Problems III-V). What mechanisms underlie implicit
smoothness regularization? How does smoothness develop throughout training, and
what is the role played by the model architecture in relation to the optimizer?

2.4 Implicit Smoothness Regularization

The experimental work presented so far isolates input-space smoothness, as mea-
sured by the input Jacobian norm, as a signature of reduced effective complexity
in the overparameterized regime, suggesting that large overparameterized networks
express functions of bounded variation. Formally, bounded variation of a continu-
ous function is expressed via Lipschitz continuity.

Definition 2.4.1 (Lipschitz continuity). Let (Rd, ‖ · ‖p) and (Rk, ‖ · ‖q) denote two
metric spaces, with distance respectively induced by the norms ‖ · ‖p and ‖ · ‖q. A
function f : Ω ⊆ Rd → Rk is K-Lipschitz continuous if ∃K > 0 such that

‖f(x1)− f(x2)‖q ≤ K‖x1 − x2‖p ∀x1,x2 ∈ Ω (2.26)

Typically, one refers to the Lipschitz constant of f as the smallest K > 0 for which
the condition holds. If f is differentiable almost everywhere, Equation 2.26 implies

K = sup
x∈Ω
‖∇xf‖q (2.27)

Investigating the Emergence of Input Smoothness

Paper C studies the emergence of bounded model function variation in relation
to double descent, and investigates some of the mechanisms controlling the phe-
nomenon. A first natural question is whether the non-monotonic trends observed
for input-space smoothness in the loss landscape in Paper B originate from the
loss function Lθ(x, y) or the underlying model function fθ. Indeed, as observed in
Paper A for ReLU networks, reduced model function variation can be appreciated
for interpolating affine spline models. If p = q = 2, computing K for the model
function is equivalent to estimating the operator norm

K = sup
x∈Ω

sup
u∈Rd:
‖u‖2=1

‖〈∇xf(x),u〉‖2 (2.28)
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Figure 2.12: (Top) Train error (dashed) and test error (solid) for the experimental
setting of paper C, with the test error undergoing double descent as model size increases.
(Left to right) ConvNets trained on CIFAR-10 (left) and CIFAR-100 (mid-left), ResNets
trained on CIFAR-10 (mid-right) and Vision Transformers on CIFAR-10 (right). (Bottom)
Empirical Lipschitz constant for the same models. The Lipschitz lower bound depends
non-monotonically on model size, strongly correlating with double descent, showing that
overparameterization promotes regularization of the learned model functions via increased
local Lipschitz continuity.

whereby the differential map ∇xf(x) : Rd → Rk is interpreted as a linear operator.
Importantly, by recalling Equation 2.5, computing the Lipschitz constant of ReLU
networks is equivalent to

K = sup
ε∈[|P|]

sup
u∈Rd:
‖u‖2=1

‖θ(ε)u‖2 (2.29)

making more apparent the intractable nature of Lipschitz constant computation for
large models. Indeed, precisely computing the Lipschitz constant of ReLU networks
is deemed NP-hard [172]. To this end, a lower bound on the Lipschitz constant

(
ED‖∇xfθ‖22

) 1
2 :=

(
1
n

n∑
i=1

sup
u:‖u‖6=0

‖θ(ε(xi))u‖22
‖u‖22

) 1
2

≤ K (2.30)

as well as an upper bound are considered

K = sup
x∈Ω
‖∇xfθ‖ ≤ sup

x∈Ω

l∏
`=1
‖D`(x)θ`‖ ≤ sup

x∈Ω

l∏
`=1
‖θ`‖ =

l∏
`=1
‖θ`‖2 (2.31)

Notably, in line with Paper A and B, the lower bound provides an average-
sensitivity estimate in proximity of the training data for ReLU networks, thereby
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Figure 2.13: Upper bound on the true Lipschitz constant, undergoing double
descent as model size increases. From left to right: ConvNets trained on CIFAR-10 (left),
CIFAR-100 (middle) and ResNets trained on CIFAR-10 (right).

capturing smoothness of interpolation, this time in logit space. Furthermore, Equa-
tion 2.31 appears in several generalization bounds for deep networks [173]–[175],
although its relation with double descent was not investigated prior to Paper C.
Figure 2.12 presents the model scaling behaviour of Equation 2.30 for ConvNets,
ResNets as well as Vision Transformers [3]. The top row shows the test error
undergoing double descent as models become overparameterized, while the bot-
tom row displays the empirical Lipschitz constant lower bound, which mirrors the
non-monotonic trend of the test error, showing that reduced complexity in the
overparameterized regime is directly captured by the model function. Figure 2.13
extends the observation to the Lipschitz upper bound of Equation 2.31. Finally,
Figure 2.14 studies the contribution of cross entropy loss to its input Jacobian

∇xLθ(x, y) = (σ(x)− ey)∇xfθ(x) (2.32)

where ey = (δcy)kc=1 is the one-hot encoding of label y, σ(x) is the softmax of fθ(x),
and δij = [i = j] is the Kronecker delta. Importantly, the term ‖σ(x)−ey‖ is related
to the model’s confidence in the prediction [176] p = 1− 1

n

∑n
i=1 ‖σ(xi)−eyi

‖, which
saturates for large uncalibrated models [177], yielding high confidence predictions
at convergence. Hence, the non-monotonic trend of input-space smoothness can be
ascribed to the model function fθ, which is thus the focus of the study henceforth.

Contribution: Geometry of Neural Network Gradients

To understand the observed trend beyond convergence, Paper C takes a closer look
at the structure of model gradients in relationship to the network architecture,
by extending earlier results for the first layer of a network [178] to networks of
arbitrary depth, highlighting a layer-wise regularization mechanism embedded in
the hierarchical structure of deep networks. Again referring to ReLU networks,
let x` := ϕ(z`) = ϕ(θ`x`−1 + b`) denote the post-activation of layer `, with pre-
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Figure 2.14: Prediction confidence as a function of model size, for ConvNets trained
on CIFAR-10 (left), CIFAR-100 (middle) and ResNet18s trained on CIFAR-10. For all
experimental settings, model confidence monotonically depends on model size.

activation z` and input x`−1, for ` ∈ [l− 1], with x0 := x ∈ Rd. By the chain rule,
for each layer `, the parameter gradient of fθ takes the form

∂fθ
∂θ`

= ∂fθ
∂z`

T

x`−1T (2.33)

obtained as the product of the upstream gradient ∂fθ

∂z` with the local gradient. At
the same time,

∂fθ
∂x`−1 = ∂fθ

∂z` θ
` (2.34)

but then, the following relation ties the input gradients to the parameter gradients

∂fθ
∂θ`

x`−1 = ∂fθ
∂z`

T

‖x`−1‖22 (2.35)

∂fθ
∂x`−1 = x`−1T

‖x`−1‖22
∂fθ
∂θ`

T

θ` (2.36)

Finally, taking the norm on both sides and applying Cauchy-Schwartz proves

Theorem 2.4.2. If ‖θ`‖2 > 0 then for each ` ∈ [l]∥∥∥ ∂fθ
∂x`−1

∥∥∥2

2

‖x`−1‖22
‖θ`‖22

≤
∥∥∇θ`fθ

∥∥2
2 (2.37)

where ∇θ`fθ := ∂fθ

∂θ` .

Hence, the parameter gradients at each layer control input smoothness at the layer,
highlighting the role of hierarchical compositionality of deep networks in promot-
ing input smoothness. Importantly, by noticing that ∇xfθ = ∂fθ

∂z` θ
`∇xx`−1, Corol-

lary 2.4.2.1 immediately follows
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Corollary 2.4.2.1. If ‖θ`‖2 > 0 and ‖∇xx`−1‖2 > 0, then

‖∇xfθ‖22
‖x`−1‖22

‖θ`‖22‖∇xx`−1‖22
≤ ‖∇θ`fθ‖22 (2.38)

The above result highlights an important aspect of implicit regularization through
model depth. Throughout training, at every iteration t, each parameter update
‖θ`(t)− θ`(t− 1)‖2 ∝ ‖∇θ`fθ‖2 and so the amount of change in input-smoothness
of the model function expressed by the network at iteration t is upper bounded by
the displacement θ`(t) − θ`(t − 1) for that parameter, establishing a link between
parameter-space dynamics and input-space dynamics. The above results motivate
two important questions.

Research Question 2.4.3. What factors implicitly control parameter gradients?
How does the model architecture affects regularization of ∇xfθ?

To study the first question, the problem is lifted to the loss landscape. Specifically,
by recalling Equation 2.32, an analogous result to Corollary 2.4.2.1 follows.

Corollary 2.4.3.1. If ‖θ`‖2 > 0 and ‖∇xx`−1‖2 > 0, then

‖∇xL(fθ,x, y)‖22
‖x`−1(x)‖22

‖θ`‖22‖∇xx`−1(x)‖22
≤ ‖∇θ`

L(fθ,x, y)‖22 (2.39)

Contribution: Local Geometry of the Parameter Space
To study the effect of parameter gradients on input-space smoothness, the former
are related to the loss landscape geometry in proximity of a critical point. By adopt-
ing a linear stability perspective [179], [180], the loss L(θ,x, y) is approximated in
a neighbourhood of a critical point θ∗ via a second-order Taylor expansion

EDL(θ,x, y) = 1
2(θ − θ∗)TH(θ − θ∗) + o(‖θ − θ∗‖2) (2.40)

where the first order term vanishes at the critical point θ∗, as does the zero-th order
term for interpolating models, and H = ED∇2

θL(θ,x, y) represents the expected
Hessian of the training loss. Let Li(θ) = L(θ,xi, yi) for (xi, yi) ∈ D, then

H = 1
n

n∑
i=1
∇2
θLi(θ) (2.41)

= 1
n

n∑
n=1
∇θfθ(xi)T∇2

fθ
Li(θ)∇θfθ(xi) (2.42)

+ 1
n

n∑
i=1
∇fθ
Li(θ)∇2

θfθ(xi) (2.43)
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By noting that ∇fθ
Li(θ)→ 0 when ‖θ − θ∗‖2 → 0 for interpolating models [181]–

[183], the expected loss Hessian amounts to the cross term

H = 1
n

n∑
i=1
∇θfθ(xi)T∇2

fθ
Li(θ)∇θfθ(xi) +O(L(θ)) (2.44)

Finally, the analysis concludes by relating input-space smoothness to parameter
space curvature as follows. Let ∇θfθ = (∇θ1fθ, . . . ,∇θlfθ), so that ‖∇θfθ‖2F =∑l
`=1 ‖∇θ`fθ‖2F . Furthermore, let c(x) :=

(
l∑̀
=1

‖x`−1(x)‖2
2

‖θ`‖2
2‖∇xx`−1(x)‖2

2

)
.

Mean Squared Error To prove the following result, the MSE EDLθ(x, y) =
1

2n
∑n
i=1(fθ(xi) − yi)2 is considered. By noting that ∇2

fθ
Li(θ) = I for MSE in

Equation 2.42, then the expected Hessian amounts to

H = 1
n

n∑
i=1
∇θfθ(xi)T∇θfθ(xi) (2.45)

Then, by revisiting Corollary 2.4.2.1, for MSE it holds

ED‖∇xfθ‖22c(x) ≤ ED‖∇θfθ‖2F (2.46)
= ED∇θfθ∇θfTθ (2.47)
= ED tr(∇θfTθ ∇θfθ) (2.48)
= tr(H) +O(L(θ)) + o(‖θ − θ∗‖2) (2.49)

Cross-Entropy Loss For the case of cross-entropy, it holds∇2
fθ
Li(θ) = diag(σ(xi))−

σ(xi)σ(xi)T . Then, revisiting Corollary 2.4.3.1

ED‖∇xL(θx, y)‖22c(x) ≤ ED‖∇θL(θ,x, y)‖2F (2.50)
= ED∇θL(θ,x, y)∇θL(θ,x, y)T (2.51)
= ED tr(∇θL(θ,x, y)T∇θL(θ,x, y)) (2.52)
≤ L′′max(θ) tr(H) +O(L(θ)) + o(‖θ − θ∗‖2) (2.53)

with L′′max(θ) = max
i∈[n],j,l∈[k]

diag(σ(xi))jl−σj(xi)σl(xi)T Lastly, by setting L′′max(θ) =

1 for MSE, the results are combined in the following statement.

Theorem 2.4.4. Under the conditions of Corollary 2.4.3.1 for every layer ` ∈ [l]

ED‖∇xL(θ,x, y)‖22c(x) ≤ L′′max(θ) ∆(L(θ))
+O(L(θ)) + o(‖θ − θ∗‖2)

(2.54)

with ∆(L(θ)) = tr(H) denoting the Laplace mean curvature operator.
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Figure 2.15: Maximum and minimum curvature for the loss in parameter space,
and input-space loss Jacobian norm. From left to right: ConvNets trained on CIFAR-
10 (left), CIFAR-100 (middle) and ResNets trained on CIFAR-10 (right). In all settings,
minimum and maximum parameter-space curvature strongly correlate with double de-
scent, peaking at the interpolation threshold, and highlighting a nonlinear dependence on
model size.

The result connects input-space smoothness to parameter-space geometry, via av-
erage Hessian curvature in proximity of a critical point, highlighting the implicit
regularization effect of the loss landscape geometry in proximity of an optimum for
interpolating models. A related contemporary work to Paper C presents a similar
result, while further explicity incorporating bias parameters, as well as proposing
an upper bound on the parameter gradients governed by a gradient-flow interpre-
tation of discrete step-size gradient descent [184]. Figure 2.15 presents the (loss
landscape) parameter-space Hessian trace as well input-space loss Jacobian norm,
showing that both quantities undergo a phase transition in the overparameterized
regime. Furthermore, to draw connections to the asymptotic training limit, the
smallest non-zero Hessian eigenvalue λr is also reported. The smallest eigenvalue
closely mirrors the trend of the input-space Jacobian norm, suggesting that in
the prolonged training limit, the non-monotonic behaviour is more closely mod-
eled by λr. Indeed, a precise connection to the prolonged training regime could
be drawn by noticing that the dynamics of gradient descent are controlled by the
smallest non-zero Hessian eigenvalue, once the training dynamics have converged
along all other eigendirections. By recalling the quadratic form approximation
of the loss in Equation 2.40, at iteration t the parameter gradient is given by
∇θL(θ)(t) = H(θ(t) − θ∗), where the direction vector θ − θ∗ directs gradient de-
scent towards the (local) optimum θ∗, with step size η > 0. The parameter updates
thus take the form θ(t + 1) = θ(t) − ηH(θ(t) − θ∗). Adding and subtracting θ∗
provides a relationship for the optimization error

(θ(t+ 1)− θ∗) = (θ(t)− θ∗)− ηH(θ(t)− θ∗)
= (I − ηH)(θ(t)− θ∗)
= (I − ηH)t+1(θ(0)− θ∗)

(2.55)
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Finally, by decomposing the expected Hessian H = UΛUT , for Λ = diag((λi)) with
eigenvalues λ1 ≥ . . . ≥ λp, and studying the dynamics in the eigenspace of H

UT (θ(t+ 1)− θ∗) = (UTU − ηUTHU)UT (θ(t)− θ∗)
= diag((1− ηλ1)t+1, . . . , (1− ηλp)t+1)UT (θ(0)− θ∗)

(2.56)

Assuming linear stability [179], [180], then the dynamics in the long training limit
t � 1 are governed by (1 − ηλr)t(θ(0) − θ∗), where λr is the smallest non-zero
eigenvalue. The connection to the smallest non-zero Hessian eigenvalue is well
aligned with recent results from related work on double descent, which provide
a lower bound on the test error in terms of λr in the asymptotic training limit
t→∞ [181]. For a more precise discussion of stability and convergence of gradient
descent, as well as SGD, the reader is referred to Mori, Ziyin, Liu, et al. [182].
Finally, the result in Paper C addresses Problem III, extending observations on
the data covariance for linear regression and random feature models [129], [132],
[133] to finite-width deep networks, whereby curvature of the loss landscape is
controlled by the parameter-space Hessian rather that the data covariance. In the
remainder of the section, experimental results are presented to discuss implications
of the theoretical results covered thus far.

Input Smoothness Throughout Training
The result of Corollary 2.4.2.1 suggest that, at each training iteration t, each dis-
placement θ(t+1)−θ(t) in parameter space controls the expected change in input-
smoothness of the model function expressed by the network. To understand the
effect of overparameterization on input smoothness, Paper C hypothesizes that
larger models, endowed with higher model capacity, are able to fit the data with
fewer gradient updates, thus incurring in lower deviation of the model function from
initialization. This intuition is aligned with the theory of deep linear networks,
whereby overparameterization is observed to have an implicit acceleration effect on
training convergence [185]. However, results in the deep linear case are indepen-
dent from model width, which instead plays an important role in affecting double
descent for non-linear models [136]. While in the infinite width limit parameters
change arbitrarily little from initialization [43], [45], characterizing the behaviour
in the rich regime of feature learning poses an open question. The following claim
summarizes the hypothesized acceleration effect of overparameterization.

Claim 2.4.5. Under small-norm initialization and appropriate hyperparameters
(ensuring convergence), overparameterized models attain faster interpolation, thereby
effectively constraining model complexity as captured by the input Jacobian norm.

To explore this intuition, Figure 2.16 tracks Equation 2.30 throughout training,
in connection with the train error, expressing the fraction of data correctly fitted
by the model at each iteration. Let ω0 denote the smallest model width attain-
ing zero training error. At initialization, all models have model-function input
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Figure 2.16: Model-function input Jacobian norm over epochs (top) and Train
error (bottom) for ConvNets (left) and ResNets (right). The smallest models respectively
attaining interpolation have width ω = 14 (left panel) and ω = 5 (right panel).

Jacobian close to zero, thus expressing a low-variation low-complexity function at
initialization. Throughout training, three distinct behaviours are observed.

• Underparameterized models (ω � ω0) are unable to interpolate the entire
training set, and their training error as well as input Jacobian quickly plateau,
remaining stable therefrom. Increasing size among small models reduces their
training error, at the cost of increased Jacobian norm.

• Models near the interpolation threshold ω0 – peaking in test error and Ja-
cobian norm (cfr. Figure 2.12) – are able to achieve interpolation, only when
given considerable training budget. Correspondingly, the Jacobian norm mono-
tonically increases over training as the training error is reduced, resulting in
models achieving worst sensitivity and worst test error.

• In contrast, overparameterized models (ω � ω0) quickly interpolate the train-
ing set, with the largest models requiring fewer epochs to do so. This is
matched by reduced growth of the input Jacobian norm which almost plateaus
after interpolation is attained.

The seemingly unbounded input Jacobian norm of models near ω0 suggests that
the observations reported in Hardt, Recht, and Singer [186] – for which prolonged
training may hurt generalization performance – are pertaining only to models near
ω0. In fact, larger models can be trained for considerably long without a compa-
rable increase in complexity (4k epochs in Figure 2.16). To further strengthen the
observation, Figure 2.17 reports the input Jacobian norm of the model function, as
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Figure 2.17: (Top left) Empirical Lipschitz constant (color) as a function of
training epochs (y − axis) and model size (x-axis). (Top middle) Test error for Con-
vNets on CIFAR-10 with 20% noisy training labels. (Top right) Test error for ConvNets
on CIFAR-10 with 20% noisy training labels. (Bottom) Analogous plots for ResNet18s
trained on the same dataset.

well as train and test error against model size (x-axis) and training epochs (y-axis).
Consistently with the line plots of Figure 2.16, small models maintain a small input
Jacobian throughout training, while models near the interpolation threshold accu-
mulate a large Jacobian norm after prolonged training. Finally, large models attain
relatively low sensitivity, plateauing earlier as model size increases past the inter-
polation threshold. Interestingly, the heatmaps allow to visually track second-order
information, captured by the rate of change of the input Jacobian. Consistently
with the trends reported in Paper B, for all models the initial increase in Jacobian
norm – occurring during “early” training (up until epoch 100 for ConvNets and 400
for ResNets) – is matched by a rapid decrease in test error. During mid-training
(epoch 100 < t < 200 for ConvNets, and 400 < t < 500 for ResNets) the rate
of increase of the Jacobian norm changes according to model size. Small models
plateau in their Jacobian norm, train and test error, and remain stable thereafter.
Models near the interpolation threshold start slowly increasing the Jacobian norm
as they slowly interpolate the training set, with corresponding increase in test er-
ror, showcasing the “malign overfitting” phenomenon [133], Strikingly, large models
quickly interpolate the training set, causing relative increase in the Jacobian norm,
inversely correlating with model size. Throughout this phase of “accelerated inter-
polation” the test error undergoes epoch-wise double descent [136]. Crucially, while
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Figure 2.18: Distance from initialization for each layer of ConvNets trained on
noisy CIFAR-10 (left), CIFAR-100 (middle), and ResNet18s trained on noisy CIFAR-10
(right). For each ConvNet and most ResNet layers, distance from initialization follows
double descent, peaking at the interpolation threshold (dashed), suggesting global bound-
edness of the model function beyond training data for large models.

for all models the Jacobian norm monotonically increases over epochs, its rate of
growth correlates with epoch-wise double descent for the test error.

Effective Complexity Beyond the Training Set
Referring again to Figure 2.16, this section discusses implications of the observed
trends for effective model complexity beyond the training data. By recalling that
the parameters of neural networks are typically initialized to small values around
zero [7], [187], the input Jacobian norm of all models is close to zero at the be-
ginning of training (c.f.r. Equation 2.6 for ReLU networks). This corresponds to
all models expressing a low sensitivity, small output-norm function at initialization,
albeit with low generalization performance (typically close to random chance). Sec-
ond, during training, fitting the dataset requires all models’ Lipschitz constant to
grow [174]. This is also reflected by a corresponding increase in input Jacobian
norm. When zero error is reached (ω ≥ ω0), the input Jacobian norm approxi-
mately plateaus, thereafter only slowly increasing over epochs. Recalling that large
models interpolate faster, this finding suggests that large models may achieve in-
terpolation via small (but meaningful) deviation from initialization, realizing an
overall smooth function even beyond the training set. To assess this hypothesis,
Paper C concludes by tracking the rescaled distance from initialization

‖θ`(t∗)− θ`(0)‖F
‖θ`(0)‖F

(2.57)

of each layer ` ∈ [l], where t∗ denotes the last training epoch. Figure 2.18 presents
distance from initialization (colour) as model width increases (y-axis), for each
layer (x-axis), for ConvNets (left) and ResNets (right). For almost all layers, the
quantity follows double descent as model width increases, peaking near the inter-
polation threshold (dashed line), and matching the epoch-wise trend reported in
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Figure 2.19: Model-function input Jacobian estimated on the test set, as well as
random noise sampled from the input space, for ConvNets (left) and ResNets (right).

Figure 2.16. This experiment substantiates the interpretation that faster interpola-
tion, as promoted by overparameterization, results in model functions which have
overall low-complexity. The observation extends Neyshabur, Li, Bhojanapalli, et
al. [24], who initially reported that distance from initialization decreases for over-
parameterized models, by further showing that the statistic is non-monotonic in
model size, peaking near the interpolation threshold. Together with the observed
low mean curvature of large models shown in Figure 2.15, this finding shares po-
tential connection to the linear mode connectivity phenomenon [188], by which
low-loss paths that connect solutions obtained by optimization of the same model
and task have been found in practice. To estimate model variation away from the
training data, Figure 2.19 tracks the model function input Jacobian norm for mod-
els trained on CIFAR-10, probing the networks by computing Equation 2.30 on
unseen test data as well as on random noise lying far from the support of the data
distribution. Intriguingly, the input Jacobian norm remains bounded even far from
D, and the model-wise trend follows double descent, peaking at the interpolation
threshold. This finding supports the view that implicit acceleration, as afforded by
overparameterization, may essentially control global model function complexity. Fi-
nally, the observation bears important connections to the Interpolation Information
Criterion [189], that interprets small-norm parameter initialization as a geometric
prior (towards low norm solutions), and expresses distance of a model from said
prior as distance of the converged parameter from initialization.
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Implications for Implicit Regularization
Revisiting Problem V, the work presented so far suggests a formulation of effec-
tive complexity for non-linear hypothesis spaces spanned by overparameterized net-
works. Under small-norm initialization and appropriate training hyperparameters,
minimum `2-norm interpolation could be cast as an implicitly regularized problem

fθ̂ = argmin
θ∈Θ s.t.

L0/1(θ,X,y)=0

ED‖∇xfθ‖2 (2.58)

framing the hypothesis space H as a Sobolev space, whereupon interpolation with
deep networks is implicitly biased towards solutions with low Jacobian norm. Re-
calling the minimum `2-norm interpolator for overparameterized linear regression
(c.f.r. Chapter 1)

θ̂ = argmin
θ∈Rd:
y=Xθ

‖θ‖2 (2.59)

it is observed that indeed Equation 2.58 encompasses also hypothesis spaces of linear
models. Importantly, for non-linear models, the notion becomes a data-dependent
norm, where integration is taken over the training set D. The implicit regulariza-
tion model of Equation 2.58 mirrors the explicit regularization strategies used for
fitting smoothing splines (c.f.r. Equation 2.19). Empirical evidence from Paper B
suggests that also second order gradients (local curvature) are implicitly regularized
by overparameterization, opening the question of whether Corollary 2.4.2.1 could
be extended to higher order derivatives. Finally, the suggested regularization model
opens a broader question of understanding for which problems interpolation coupled
with implicit smoothness regularization is a good prior ensuring generalization.





Chapter 3

Beyond Supervised Learning

The success of deep networks on discriminative problems extends beyond super-
vised learning. Recent advances in representation learning [161] have revamped
the notion of Self-Supervised Learning [103], [190], providing a broad family of
unsupervised learning algorithms capable of extracting representations that match
the performance of supervised learning on downstream classification [104], [191],
propelling the rise of foundation models [11], [65], [66], [192], [193]. In place of
approximating a supervised input-label mapping x 7→ y, SSL methods map unla-
belled input data to embeddings that aim to capture semantic relationships between
perturbed versions of the input. Generative approaches rely on learning to recon-
struct masked input, conditionally to either input space or latent space informa-
tion [1], [4], [11], [194]. Invariance-based approaches augment the training dataset
using a family of input perturbations (e.g. rotations, translations, cropping, pho-
tometric transformations, etc.) and leverage symmetries in the augmented data to
map semantically related inputs close to each other in embedding space. Among
invariance-based approaches, contrastive methods attain invariance by mapping
positively related embeddings close to each other, while separating them from neg-
atively related ones [195], [196]. Non-contrastive methods operate exclusively by
matching positively related embeddings, while avoiding trivial constant solutions
via regularization [197], [198], or self-distillation with teacher-student networks [66],
[199]. The present chapter focuses on invariance-based SSL algorithms and studies
downstream robustness by exploring smoothness of the learned representations.

3.1 Preliminaries

Formally, for an encoder network fθ : Rd → Rp, SSL operates on a set of un-
labelled input samples D = {xi}ni=1 with (x1, . . . ,xn)T ∈ Rn×d to produce a
representation (fθ(x1), . . . , fθ(xn))T ∈ Rn×p by training the encoder with an op-
tional projection head hΦ : Rp → Rq returning embeddings (hΦ ◦ fθ)((x1, . . . ,xn)).
The learned encoder fθ can later be used by a simpler model g : Rp → Rk to

49
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solve a downstream task by training g ◦ fθ using labelled data while either keeping
the encoder fθ frozen (linear probing) or fine-tuning g ◦ fθ end-to-end. A promi-
nent SSL training paradigm relies on data augmentation [200], [201] to generate
m perturbed views of the training data and enforcing the corresponding embed-
dings to be approximately invariant under the chosen family of augmentations.
Formally, for a perturbation distribution ∆X×X over the input space X := Rd,
perturbed versions ξ(x) of x are drawn from ∆(ξ|x), augmenting the training set
to (x1, . . . ,xn)T 7→ (ξ1(x1), . . . , ξm(x1), . . . , ξ1(xn), . . . , ξm(xn))T ∈ Rnm×d. Here-
after, X ∈ Rnm×d is used to denote the augmented training set, with corresponding
features Z ∈ Rnm×p. Sometimes, related samples are for convenience denoted by
xji := ξj(xi), for j ∈ [m] and i ∈ [n], with corresponding features zji . Finally, the
relation between perturbed samples is represented by the augmentation graph [202]
with adjacency matrix G ∈ Rnm×nm, with Gii = 0 ∀i and Gij > 0 if samples Xi

and Xj are semantically related, for i 6= j.

3.2 Invariance-Based Objectives

Several SSL training objectives L : Rp×Rp → R+
0 can be expressed as the weighted

sum of an invariance term and a regularization term

L = Linv + Lreg (3.1)

Cabannes, Kiani, Balestriero, et al. [203] propose a theoretical SSL objective that
captures both contrastive and non-contrastive methods by generalizing the con-
trastive loss of [202] to encompass the non-contrastive VICReg loss [197]

L = βEx∼DEξi,ξj

[
d
(
fθ(ξi(x)), fθ(ξj(x))

)2]+ ‖Eξ[fθ(ξ)fθ(ξ)T ]− Ip‖22 (3.2)

where d(·, ·) is a (pseudo-)distance between embeddings. Equation 3.2 allows to
recover popular SSL objectives. By decomposing the second term on the RHS into
a trace term 1 and an orthogonalization constraint

p∑
i=1

(ρ(Z:i,Z′:i)− 1)2 +
p∑
i=1

∑
j 6=i

ρ(Z:i,Z′:j)2 (3.3)

for β > 0, one recovers the VICReg objective [197], while setting β = 0 yields
Barlow Twins [198]. Finally, SimCLR [196] is equivalent to setting β = 1 and using

1Additionally, Equation 3.3 is rewritten by computing the cosine similarity be-
tween all positively related pairs according to G. This is accomplished by re-
placing ρ(Z:i,Z:j) with ρ(Z:i,Z′:j), and by constructing [204] Z,Z′ ∈ Rnm2×p as
Z = (ξ1(x1), . . . , ξm(x1), . . . , ξ1(x1), . . . , ξm(x1), . . . , ξ1(xn), . . . , ξm(xn), . . . , ξ1(xn), . . . ξm(xn))T ,
Z′ = (ξ1(x1), . . . , ξ1(x1), . . . , ξm(x1), . . . ξm(x1), . . . , ξ1(xn), . . . , ξ1(xn), . . . , ξm(xn), . . . ξm(xn))T .
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the following similarity score

d(Zi,Zj) = − log
(

exp(ρ(Zi,Zj)/τ)∑
h=1 h6=i exp(ρ(Zi,Zh)/τ)

)
(3.4)

with temperature parameter τ > 0. A typical choice of ρ is given by the cosine
similarity for SimCLR and Barlow Twins, and by the standard inner product be-
tween (centered) Zi and Zj for VICReg. Importantly, for contrastive objectives
as well as VICReg, the invariance term pushes embeddings of semantically related
samples close to each other in feature space. At the same time, for non-contrastive
losses such as Barlow Twins and constrained VICReg (β = 0) invariance is encoded
purely by maximizing cross-correlation of related embeddings (Equation 3.3), while
retaining global feature informativeness via the regularization term [198].
For linear encoders fθ = θ ∈ Rd×p, with Z = Xθ, Balestriero and LeCun [204]
provide closed-form solutions for several contrastive and non-contrastive SSL objec-
tives, allowing to formulate invariance-based SSL as a regression problem. Taking
for example β = 0, allows to obtain a formulation of the Barlow Twins loss as a
constrained optimization problem

L =
∥∥∥ 1
nm

θTXTXθ − Ip
∥∥∥2

(3.5)

whereby the unconstrained Lagrangian formulation recovers the original Barlow
Twins loss (Equation 3.3). The linear regression interpretation allows to immedi-
ately see that learning invariance in SSL is equivalent to recovering the left singular
vectors of particular loss-specific cross-correlation (or covariance) operators (and
thus that the optimization problem is rotation invariant [202]). Furthermore, if
the covariance XTX is diagonalized as UTXTXU = Λ, minimizing Equation 3.5
amounts to whitening the covariance via θ, and thus recovering in θ the inverse
covariance singular values Λ− 1

2 . Importantly, for an encoder network of width p,
the problem of minimum norm interpolation can be cast as recovering the top p
eigendirections of the covariance operator [203], [205], [206].
By explicitly learning invariance to input perturbations, augmentation-based SSL
naturally attains a degree of robustness to noise. Equation 3.5 frames learning
as an approximation problem [205], whereby invariance is attained by minimizing
feature variation. In the general setting and in keeping with standard regression,
the quality of the approximation is determined by the expressivity of the encoder
(controlled by p and the model architecture), as well as the structure of the learning
problem, controlled by XTX, and the augmentation graph G. This interpretation
begs two important questions.

Research Question 3.2.1. How does model scaling (controlling p) affect the ap-
proximation quality, and thus the attained invariance? How well does invariance
transfer downstream?

Paper D explores the question through the lens of effective representation rank.
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3.3 Geometry of Self-Supervised Representations

Before exploring representation robustness, the linear evaluation protocol of SSL
is briefly recalled. Given a supervised downstream task, assessing the performance
of pre-trained representations typically involves composing a linear classification
head g : Rp → Rk of parameter W with the encoder network, and training the
resulting classifier on the task while freezing the encoder’s parameters. The evalua-
tion setting presents two important drawbacks. First, it relies on access to labelled
downstream data, which might be expensive to collect. Second, the process of
downstream evaluation can be time and resource consuming, especially during the
development stage of a model, when multiple hyperparameter settings and network
configurations have to be tested. In order to measure the quality of representations
without relying on labelled downstream data, a series of recent works establishes a
positive correlation between downstream performance and notions of effective rank
of the representation covariance estimated on the pre-training dataset D = {xi}ni=1

Σ = 1
n

n∑
i=1

1
m

m∑
j=1

(fθ(xji )− fθ)(fθ(xji )− fθ)T (3.6)

centered at fθ = 1
n

∑n
i=1

1
m

∑m
j=1 fθ(xji ). Compared to the standard notion of rank

of a matrix, real-valued estimates of effective rank aim to capture feature diversity
by measuring concentration of energy over the available p feature dimensions [53],
[207], as a function of the eigenspectrum λ(Σ) = {λ1 ≥ . . . ≥ λr} for r ≤ min{mn−
1, p}. Agrawal, Mondal, Ghosh, et al. [208] empirically observe that the covariance
eigenspectrum of SSL representations is well approximated by a power law

λi ∝ i−α (3.7)

and correlate its spectral decay coefficient α > 0 with downstream performance,
showing that best downstream generalization is attained for α ≈ 1. He and Ozay
[209] study the emergence of power-law eigenspectra in self-supervised representa-
tions of vision datasets, in relation to model hyperparameters such as the depth
of the projector head. Finally, Garrido, Balestriero, Najman, et al. [210] estimate
effective rank based on the entropy of the normalized eigenspectrum [207]

RankMe(Σ) = exp
(
−

r∑
j=1

pj log pj
)

(3.8)

for pj = σj

‖σ‖1
, where σ = (σ1, . . . , σr) and σj =

√
λj are the singular values 2

of Σ. Intuitively, models with high effective rank are able to efficiently encode
2In [210] the effective rank measure is computed using the singular values of the embeddings’

covariance rather than the representation covariance Σ. However, the authors explicitly assume
a monotonic relationship between the effective rank of the representation and that of the embed-
dings, implying that either can be employed for computing order correlations.
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diverse features from the pre-training set, that a simple linear readout layer could
later exploit to solve a specific downstream task. A second intuition relies on the
problem of representation collapse in SSL, whereby an encoder may attain trivial
invariance by mapping every input to a constant [211]. Hence, high representation
rank positively correlates with the model avoiding collapse. Finally, the authors of
RankMe, justify the connection between high representation rank and downstream
performance, by invoking Cover’s theorem [212], for which non-linear separability
of a set of data points assigned to random groups is more likely in high-dimensions,
and further noting that linear probes are unable to increase the representation rank.

Exploring Representation Robustness
Building on the intuition that expressive encoder architectures are in principle able
to attain lower approximation error and consequently stronger invariance, Paper D
explores whether notions of effective rank of Σ are indicative of downstream robust-
ness for high-dimensional representations. A key quantity expressing robustness of
an encoder fθ to local perturbations is the expected Jacobian norm

J = ED‖∇xfθ(x)‖2 (3.9)

capturing sensitivity of the representation to perturbations of the input data. In
turn, encoder robustness affects that of a classifier g, since

‖∇xg(x)‖2 ≤ ‖W‖2‖∇xfθ(x)‖2 (3.10)

Furthermore, tracking Equation 3.9 allows to draw direct connections to the repre-
sentation covariance Σ, which is the object of studies of rank-based representation
quality metrics. Current self-supervised objectives encode rank-seeking terms in
order to prevent representation collapse, either implicitly [194], [196], [199] or ex-
plicitly [197], [198]. In turn, for models with large capacity, high-rank at scale may
promote retaining nuisance factors from the training data, thus affecting representa-
tion sensitivity. At the same time, as seen in Paper C, robustness of large networks
improves in the overparameterized regime [213], where redundancy of representa-
tions increases. Hence, connecting the geometry of Σ to downstream robustness
entails two methodological questions.

Research Question 3.3.1. What is the connection between effective representa-
tion rank and robustness? For fixed sample size |D|, how does robustness scale in
relation to encoder size?

Contribution: Effective Rank and Input Sensitivity
The first step towards studying representation robustness is relating Equation 3.9
to effective rank of Σ. By recalling that, for each sample xi ∈ D, augmentation-
based SSL methods mapm views x1

i , . . . ,xmi of xi to related representations fθ(xji ),
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Paper D provides a decomposition of the feature covariance Σ into two terms. The
first one measures local variation within each set of representations of related views,
while the second measures variation of representations associated with different base
inputs xi. For each base input xi, let xi = 1

m

∑m
j=1 xmi denote the centroid of the

set of positives {x1
i , . . . ,xmi }. Then, a local linearization 3 of fθ is considered such

that
fθ(x) = fθ(xi) +∇xfθ(xi)(x− xi) + o(‖x− xi‖2) (3.11)

using the shorthand ∇xfθ(xi) := ∇xfθ(x)|x=xi
. Then, 1

m

m∑
j=1

fθ(xji ) ≈ fθ(xi) and

1
m

m∑
j=1

(
fθ(xji )− fθ(xi)

)(
fθ(xji )− fθ(xi)

)T = ∇xfθ(xi)Σ(i)∇xfθ(xi)T (3.12)

where Σ(i) = 1
m

∑m
j=1(xji − xi)(xji − xi)T is the input space covariance for positive

views xji , for j ∈ [m]. Finally, by the law of total covariance, Σ can be decomposed
into

Σ = 1
n

n∑
i=1

1
m

m∑
j=1

(fθ(xji )− fθ)(fθ(xji )− fθ)T

= 1
n

n∑
i=1
∇xfθ(xi)Σ(i)∇xfθ(xi)T + 1

n

n∑
i=1

(fθ(xi)− fθ)(fθ(xi)− fθ)T

= Σintra + Σinter (3.13)

The first term in the decomposition measures the expected covariance within repre-
sentations corresponding to views of the same input, and the second captures covari-
ance between representations of different base samples. Concretely, Σintra captures
local variation of related representations around the corresponding centroid fθ(xi),
thus measuring invariance attained by the representation. If the invariance term in
Equation 3.2 is written in terms of the squared `2 distance

Linv = βEx∼DEξi,ξj
‖fθ(xji )− fθ(xji )‖

2
2 (3.14)

by the triangle inequality it is easy to see that reducing the distance between each
fθ(xji ) and the corresponding centroid fθ(xi) reduces the approximation error, in
turn improving invariance. The second term instead measures separability of repre-
sentations corresponding to different base samples, whereby large variance denotes
well separated representations. Importantly, the two covariances also appear in
theoretical analyses of neural collapse of deep representations [75] in supervised
learning as well as in the Fisher discriminant [124], whereby tr

(
Σ−1

intraΣinter
)
is

3Paper D provides a more nuanced local linearization of the feature space, by interpreting
each cluster of positively related features as an object manifold. Here, a Euclidean approximation
is used for conciseness of exposition.
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measured to capture the relative degree of invariance and separability attained by
a representation. Importantly, while in supervised learning class membership is
used to identify related input x1

i , . . . ,xmi , the present formulation does not rely on
labels, and instead considers input related if they are different views of the same
base training point. In the following, a link between the features Jacobian and the
spectral decay coefficient (Equation 3.7) is presented.

Assumption 3.3.2. The eigenspectrum of the feature covariance matrix Σ is well
approximated by a power law with coefficient α > 0.

The analysis begins by noting that both Σintra and Σinter are symmetric Positive
Semi-Definite (PSD), and thus admit only non-negative real eigenvalues. To sim-
plify notation, the following assumes that Σinter is full rank. In the general case, the
sequel can be easily adapted by discarding the null-space of Σinter before proceed-
ing. Let V TΣinterV = Λinter denote the transformation that diagonalizes Σinter,
with unitary matrix V ∈ Rp×p. Denote Z = V Λ−

1
2

inter the corresponding whitening
transformation. Then, the matrix ZTΣintraZ is symmetric PSD, and is in turn
diagonalized by UTZTΣintraZU = Λintra. Combining the two observation yields

UTZTΣZU = UTZTΣintraZU + UTZTΣinterZU (3.15)
= Λintra + Ip (3.16)

Finally, let λk(A) denote the k-th eigenvalue of a square matrix A, and r = rank(A).
Then, the relationship λk(A)λr(B) ≤ λk(AB) ≤ λk(A)λ1(B) is used to prove

λk(UTZTΣZU) = λk(ZTΣZ) = λk(Λ−1
interΣ) (3.17)

= λk(Ip + Λintra) (3.18)

from which

λk(Σ)λp(Λ−1
inter) ≤ λk(Ip + Λintra) ≤ λk(Σ)λ1(Λ−1

inter) (3.19)

By recalling that Σintra depends on the input Jacobian (Equation 3.12), and by
virtue of assumption 3.3.2, then

λk(Ip + Λintra) ≤ k−αλ1(Λ−1
inter) (3.20)

connecting the eigenspectrum of Σintra to the spectral decay coefficient α. Then,
if α → ∞ (corresponding to low effective rank), the k-th eigenvalue of Σintra will
rapidly decay. Conversely, by

λk(Λ−1
inter)r−α ≤ λk(Ip + Λintra) (3.21)

if r = rank(Σ) ≤ min{mn− 1, p} is large and α→ 0, then λk(Σintra) will increase.
Hence, the spectral decay α and the eigenspectrum of Σintra, dependent on the
Jacobian ∇xfθ, are inversely related.
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Figure 3.1: Spectral decay and feature smoothness for supervised learning.
(Left to right) Test error (solid) and train error (dashed) for ResNets of increasing base
width trained on CIFAR-10 as well as noisy CIFAR-10; Spectral decay coefficient; Input
Jacobian norm of features fθ learned via standard supervised learning. The spectral decay
of features as well as their input sensitivity mirror double descent as model size increases,
establishing a negative correlation between global and local representation geometry mea-
sures, and motivating the use of the metrics in studying SSL representations.

Spectral Decay in Supervised Learning

To validate the connection between effective rank and feature sensitivity, the mea-
sures are first computed in a supervised learning setting. The purpose of the ex-
periment is twofold. First, establishing a qualitative (and quantitative) correlation
between α and J , and second, to assess whether the correlation holds both in the
underparameterized and overparameterized regime, which are both covered by stan-
dard supervised settings. Figure 3.1 tracks the spectral decay α of the penultimate
layer’s feature covariance, as well as the average input Jacobian norm for the same
features. In line with Paper C, the input Jacobian is able to mirror double descent
for the test error, also matched by the spectral decay coefficient, which inversely
correlates with the Jacobian norm. In the underparameterized regime, the input
Jacobian increases up until the interpolation threshold is reached, accompanied
by a slower decay of the features effective rank. Finally, in the overparameterized
regime, feature sensitivity is reduced, followed by a decrease in effective rank (faster
spectral decay). Importantly, in keeping with theoretical analysis of underparam-
eterized networks [174], it is noted that fitting the training data requires a model
to increase its Lipschitz constant (in turn affecting the penultimate layer’s features
Jacobian). As a consequence, when model scale increases within the underparam-
eterized regime, larger models are able to fit a larger fraction of the training set,
with corresponding increase in sensitivity (larger Lipschitz constant) and effective
rank. The monotonic increase in input sensitivity and effective rank spans all mod-
els in the underparameterized regime, until the interpolation threshold is reached,
exposing a limitation of both metrics, which are unable to discriminate between
underfitting and overfitting models until interpolation is reached.
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Figure 3.2: Spectral decay and feature smoothness for SSL, for ResNet18 back-
bones pre-trained with different SSL objectives on CIFAR-10 (left) and STL-10 (right),
as model size varies, extending the inverse relation between α and the feature Jacobian to
the Self-Supervised setting.

Self-Supervised Representations

After experimentally establishing a correlation between effective rank of features
and their input sensitivity, a strong correlation between the two metrics is estab-
lished in the SSL setting, for representations trained on a ResNet backbone with
Barlow Twins [198], BYOL [199], SimCLR [196], as well as VICReg [197]. Figure 3.2
presents a strong visual correlation between effective rank and feature sensitivity
(quantitatively validated in Paper D), extending the finding to the SSL setting.

Effect of Model Scaling

Finally, the relationship between effective rank and feature sensitivity is explored
across model scales. Figure 3.3 reports downstream test performance, effective rank
and feature sensitivity for ResNet backbones as the number of parameters in the en-
coder architecture fθ varies. For all SSL algorithms considered, a monotonic trend
for all three metrics is observed, with downstream performance improving as model
size increases. The observed trend positions the SSL methods and architectures
considered in the underparameterized regime of learning, whereby increasing model
capacity affords better performance at the cost of increased model sensitivity (rel-
ative to smaller models). Thus, consistently with the supervised learning setting,
one might expect the Jacobian norm and effective rank to be unable to discriminate
between underfitting models – which may attain a degree of robustness due to their
limited ability to overfit – and overfitting models with increased sensitivity in the
downstream evaluation setting.
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Figure 3.3: SSL across model scales. (Left to right) Test error for linear probes
trained on SSL features with ResNet18 encoder on CIFAR-10; Spectral decay coefficient;
Input Jacobian norm of SSL features fθ. With reference to Figure 3.1, performance as well
as effective rank of SSL models behaves consistently with the underparameterized regime
of supervised learning.

Tracking Robustness

To conclude, Paper D measures robustness of SSL pre-training to adversarially
generated data, by relying on poisoned datasets [214], [215]. Data poisoning is
a technique aimed at producing adversarially-corrupted datasets that are hard to
learn by supervised baselines. By including class-dependent high-frequency noise
in each image, poisoning adds spurious patterns to the data, that a classifier might
pick on in order to discriminate the classes. However, since the patterns are not
occurring in the population distribution, models trained on poisoned data show
poor generalization performance. Adversarially-poisoned images are generated by
using projected-gradient attacks [216] on a large model pre-trained with supervised
learning, and are observed to be transferable across similar architectures [217].
Since poisoned datasets contain class-specific spurious patterns, it is conjectured
that large-scale SSL backbones trained using rank-seeking objectives are pushed to-
wards encoding those spurious patterns in their representation. Then, in the linear
evaluation setting, a readout layer might pick on the spurious features to classify
the downstream data. To test the hypothesis, a series of ResNet18 backbones is
pre-trained on a version of CIFAR-10 poisoned by projected-gradient attack on
a pre-trained ResNet50 architecture. Then, two sets of linear readout layers are
trained on top of the frozen encoder, one on the standard CIFAR-10 training set,
and one on the poisoned CIFAR-10. Finally, downstream performance is evaluated
on the clean CIFAR-10 test set. Figure 3.4 shows the validation performance of
the two sets of linear probes, in relation to their effective rank as measured by
the spectral decay coefficient and RankMe (Equation 3.8). First, it is observed that
downstream performance on clean data monotonically improves with model size,
suggesting that high-rank SSL representations are able to separate ‘signal’ from
‘noise’ in their representations. Second, the effect of adversarial noise can be ob-
served in the downstream performance of linear probes trained on the poisoned
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Figure 3.4: Measuring robustness of SSL pre-training across model scales.
Tracking effective rank is insufficient to select models that are high performing and robust.
(Left) Linear probe evaluation performance for features pre-trained on poisoned data.
Linear probes are evaluated both on the clean test set (dashed line) and poisoned data
(solid line). (Right) Tracking effective rank as model size increases, using RankMe (red
line) and the spectral decay coefficient (blue line).

data, whereby performance is affected for large enough models, showing an increas-
ing gap between robustness and performance as model size grows. Intriguingly,
robustness plateaus for large models, consistently over half of the model scales con-
sidered (base width > 32). Lastly, it is observed that measures of effective rank
are unable to capture the plateau in robustness, indicating that tracking effective
rank may be insufficient to measure downstream robustness. In, conclusion, in
the range of model scales considered, SSL methods behave consistently with the
underparameterized regime of supervised learning, whereby increasing model scale
affords better downstream performance. However, different from supervised learn-
ing, there exists model scales after which downstream performance and robustness
respectively plateau, whereas effective rank continues increasing, suggesting a satu-
ration threshold for downstream robustness. Importantly, measuring effective rank
of the feature distribution is not sufficient for tracking downstream robustness,
raising the need for dedicated measures targeting SSL representations.

3.4 Exploring Representation Robustness

The present section expands the study of downstream robustness of SSL under
model scaling, to investigate the connection between invariance-based learning and
robustness. Recalling Equation 3.2, augmentation-based SSL algorithms extract
representations of the data by minimizing the distance between related embed-
dings, while preventing representation collapse. As discussed in section 3.2, learn-
ing invariance is equivalent to recovering the eigendirections of appropriate data-
covariance operators (dependent on the choice of loss function). The degree of
invariance attained on the training data by the learner is directly tied to the ap-
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proximation error, expressing how closely the features capture variation of the data.
Within this setting, an important open question towards the safe deployment of SSL
methods is understanding to what extent the attained invariance transfers down-
stream, with OOD generalization providing an important class of problems in which
invariance to input perturbations has been connected to improved robustness.
Formally, in the context of supervised learning, theoretical frameworks of OOD
robustness treat a deep network classifier as the composition of a linear predictor g
with non-linear features fθ. For a collection of input Eavail = {(xe, y) : e = 1, . . . , E}
governing the supervised training data across different environmental conditions,
the problem of generalizing to unseen data sampled from a wider set of distributions
Eall ⊇ Eavail is related to the variation of features fθ over Eavail [30]. Variation is
given by

V(fθ, Eavail) = max
y∈1,...,k

sup
ei,ej

d
(
P(fθ(xei)|y),P(fθ(xej )|y)

)
(3.22)

where d(·, ·) represent a symmetric distance between distributions and y denotes
supervised class information. Assuming that OOD data Eall magnifies variation of
the features fθ, a non-negative, non-decreasing expansion function s : R+

0 → R+
0

fixing 0, represents the increase in feature variation s(V(fθ, Eavail))) incurred in Eall.
Based on the expanded variation, Ye, Xie, Cai, et al. [30] mandate that, for learnable
tasks, reducing feature variation on Eavail can contrast the expansion function, thus
improving the chances of OOD generalization.
In the context of SSL, invariance-based objectives promote a stronger notion of
convergence than Equation 3.22, making SSL representations potential strong can-
didates for learning robust features. More precisely, Equation 3.22 can be cast in
the context of SSL by identifying the ID domains Eavail with the distribution of per-
turbations (data augmentation) used to generate multiple views of the unlabelled
training data D = {xi}ni=1

V(fθ, Eavail) = max
x∈D

∑
ξi,ξj

d
(
fθ(ξi(x)), fθ(ξj(x))

)
(3.23)

where distributional distance is replaced by the pairwise distance between all views
of each unperturbed sample x. Such point-wise notion of distance is stronger than
distributional distance and it controls the latter. In summary, the above frame-
work allows to connect feature invariance to robustness, via the approximation
error. With reference to the regression formulation of SSL (Equation 3.5), the
observation allows to set up an experimental framework for investigating factors af-
fecting downstream generalization, namely by explicitly controlling those affecting
the approximation error. Paper E explores OOD robustness of vision-based SSL
encoders, by controlling the encoder dimensionality p, the number of base train-
ing samples n, as well as the number of views m of each base training point, and
presents an empirical study of OOD generalization for representative contrastive
and non-contrastive methods. To empirically explore OOD generalization, a family
of SSL encoders are trained on an unlabelled dataset D = {xi}ni=1 of size n. Af-
ter models are pre-trained, performance on supervised In-Distribution downstream
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Figure 3.5: ID and OOD generalization under model scaling of ResNet en-
coders on CIFAR-100, for increasing OOD noise and fixed dataset size. In-Distribution
(ID) performance for all models (black curves) monotonically improves with model scale.
Strikingly, OOD robustness (averaged across 11 noise distributions and 5 seeds) ex-
hibits the bottleneck behaviour associated with underparameterized learning. Specifically,
across noise intensities (solid colored lines), downstream robustness plateaus after a noise-
dependent model scale is reached. Horizontal dotted lines, matching the colour of the
noise intensity curves, are placed at ±1% of the largest model’s performance for that
noise intensity, to visually identify the plateau.

tasks is assessed by training a linear probe g : Rp → Rk on top of the frozen repre-
sentation, using the labelled version of the data Dy = {(xi, yi)}ni=1. Finally, OOD
robustness is quantified by evaluating g ◦ fθ using noisy versions of the input data
D̃y = {(x̃i, yi)}ni=1, whereby each training point is corrupted with several OOD
noise distributions, each with increasing controlled intensity [218].

Contribution: OOD Robustness Under Scaling Laws

The ID performance of state of the art neural networks behaves according to phe-
nomenological scaling laws, whereby when the number of model parameters and
dataset size jointly scale, performance improves following a power law [38], [219],
[220]. If either dataset size or model scale bottleneck each other, ID performance
breaks from the scaling law and plateaus [221]. For large datasets and small mod-
els, bottlenecks may occur when the model has exhausted capacity to fit additional
data, whereas for large models and small datasets, plateauing is representative of
underfitting [38]. In the following, the occurrence of analogous behaviour is estab-
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Figure 3.6: ID and OOD performance on CIFAR-100 for non-contrastive Barlow
Twins under joint model and dataset scaling. Dotted horizontal lines mark the onset of the
plateau in OOD robustness for different dataset sizes. While ID performance consistently
improves for increasing model and dataset size, all models plateau on OOD task when
trained on larger datasets.

lished for OOD robustness of augmentation-based SSL. Figure 3.5 studies ResNet
encoders evaluated on a corrupted version of CIFAR-100 [218], whereby 11 noise
distributions are used to perturb the training data. Furthermore, each noise is ap-
plied with 5 different intensities, for a total of 11× 5 noisy versions of the dataset.
The setup allows to study expected OOD robustness (across the noise distribu-
tions) of each model, as noise intensity is controlled. For both non-contrastive
as well as contrastive learning algorithms, ID performance considerably improves
when encoder networks enjoy increased expressivity. In contrast, OOD robustness
follows a different scaling law, whereupon low noise intensities (namely, intensity
1) scale similarly to ID performance, while robustness to stronger noise plateaus.
The onset of the plateau across model scales is dependent on the noise intensity,
with stronger noise causing smaller models to enter the plateau. The observation
establishes scaling law behavior for OOD robustness, and opens the question of
identifying bottlenecking quantities that may cause the observed behaviour. To do
so, Paper E studies the effect of dataset size and model scale.

Robustness Under Joint Scaling

Jointly scaling dataset and model size allows to reproduce the bottleneck phe-
nomenon for ID performance on small datasets (Figure 3.6), while larger dataset
sizes afford performance improvements across all model scales. Moving to OOD
data causes models across all dataset sizes to incur in plateauing, with more pro-
nounced effects for strong noise intensities. By reporting bottlenecks with respect
to both model and dataset size, the experiment more clearly establishes scaling-
law behaviour for OOD robustness. Importantly, while non-contrastive learning
shows improved performance across all dataset scales, the situation is strikingly
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Figure 3.7: Robustness of contrastive learning plateaus in the OOD setting across
all model scales, showing a relative loss of robustness for large models.

different for contrastive learning (SimCLR). Figure 3.7 highlights a strong bot-
tleneck behaviour on OOD data for SimCLR across all models for large dataset
sizes, suggesting that increasing the number of unperturbed training points fails
to counteract the growth of feature variation in the OOD setting for SimCLR. In
contrast, for the same datasets and models, ID performance improves without any
bottlenecks, excluding a plateau due to ID underfitting.
The observation can be interpreted in terms of approximation error. By increasing
the number of unperturbed training points (and correspondingly the augmentation
graph G), the quadratic form expressing invariance (Equation 3.2) counts addi-
tional eigendirections, than an expressive enough model can recover. On the one
hand, if the additional eigendirections overlap with the OOD test set Eall, then one
could expect improved robustness to follow. On the other hand, if the additional
eigendirections do not contribute to robustness, then an improvement in ID perfor-
mance may be still observed, without a corresponding improvement in robustness.
Building on this intuition, Paper E explores how increasing dataset size with un-
perturbed samples affects downstream robustness, vis-à-vis increasing the number
of synthetic samples via data augmentation.

Synthetic versus Natural Data

Up to this point, the pre-training pipelines used m = 2 augmentations for each
unperturbed sample to construct the augmentation graph at each iteration. Paper
E concludes by studying the role of data augmentation and dataset size n. For a
fixed baseline dataset of 10k unperturbed samples, different encoders are trained
with m = 2 and m = 4 augmentations. Furthermore, the dataset size is doubled to
20k unperturbed samples and m = 4 augmentations, as well as 10k samples with
8 augmentations and 40k samples with 2 augmentations. The latter three settings
provide a fixed total dataset size of mn, whereby the proportion of natural and aug-
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Figure 3.8: Increasing dataset size with natural samples vs augmentations
impacts OOD robustness differently. For non-contrastive methods (top row), extending
a dataset with natural data provides the strongest improvement in performance, both ID
and OOD. In contrast, contrastive learning mostly benefits from novel natural samples for
ID performance, while data augmentation and natural data similarly contribute to OOD
robustness across all noise intensities.

mented samples varies. Figure 3.8 reports model scaling results for different dataset
configurations, for non-contrastive (top row) and contrastive (bottom row) meth-
ods. Increasing dataset size for Barlow Twins provides considerable performance
gains, both ID and OOD. While large models still exhibit plateauing behaviour
for strong noise intensity, all models benefit from accessing additional unperturbed
samples, showing considerable improvements compared to settings with more syn-
thetic samples. The same behaviour for ID data can be observed for SimCLR. In
the OOD setting however, robustness plateaus across all configurations, showing
only marginal benefits of using unperturbed samples vs increasing the number of
augmentations.
The experiments hereby presented establish previously unreported scaling-law phe-
nomena for OOD robustness, highlighting the need to isolate and characterize the
factors affecting OOD robustness. Importantly, earlier attempts to produce a ro-
bustness metric based on the feature covariance Σ failed to generalize to the model
scaling setting considered. In line with Paper D, the models studied behave con-
sistently with the underparameterized regime of supervised learning, whereby tra-
ditional, unnormalized measures of rank (input Jacobian norm as well as effective
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rank of features) increase with model scale, due to the larger models attaining im-
proved fitting of the data. Identifying proper normalization strategies remains at
the time of writing a direction for future work. Nevertheless, the empirical ex-
ploration of Paper E establishes strong trends, paving the way for larger scale
studies as well as a full theoretical characterization of the plateauing phenomenon
for robustness.





Chapter 4

Conclusions and Future Work

The present chapter concludes the thesis, by summarizing the main contributions,
as well as discussing limitations and identifying directions for future work.

4.1 Summary of Contributions

Deep networks provide a versatile class of function approximators, able to learn
structured representations from natural data embedded in high-dimensional Eu-
clidean spaces. Over thirty years of technical advances have provided large, com-
plex architectures, which strike a balance between expressivity and trainability
with first order optimization methods, despite the non-convex nature of parameter
estimation. In the pursuit of characterizing the hypothesis class of models that
attain good generalization, the thesis presented a study of emerging regularity of
the input/output mappings expressed by deep discriminative networks in practice,
identifying input smoothness as a key signature of reduced effective complexity in
the overparameterized regime. The main focus of Paper A-C has been to estab-
lish a connection between implicit norm-based capacity control in connection with
overparameterization and the ability of neural networks to perfectly fit the training
data. Focusing on affine spline operators parameterized by ReLU networks, Pa-
per A presented an empirical characterization of the activation regions partition of
overparameterized models, identifying local redundancy of activation regions and
the corresponding reduced non-linearity as a signature of implicit regularization
for trained networks. This was done by introducing an adaptive activation re-
gion discovery algorithm, as well as a measure of non-linearity implicitly based on
local curvature. Paper B extended the study to the loss landscape of neural net-
works, proposing a connection between local smoothness and curvature of the input
space in connection with interpolation of noisy training data, and extrapolation over
high-dimensional volumes. The study was carried out by proposing an approximate
geodesic Monte Carlo integration method, that allowed to estimate the input-space
curvature of the loss landscape in proximity of interpolated training data, as well as
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to assess extrapolation away from the data. Paper C provided a formalization of
the findings of the prior two works, by connecting the proposed input-smoothness
metrics to a more principled notion of local input smoothness related to Lipschitz
continuity, and then establishing a connection between implicit smoothness regu-
larization and the dynamics of gradient descent in proximity of a stationary point
of the loss in parameter space. The construction is based on relating parameter
gradients to input-space gradients across the layers of neural networks, establishing
a structural relationship between model depth and regularization beyond norms.
Additionally, in the context of linear regression, the proposed smoothness metric
reverts to the widely studied parameter norm, partly reconciling linear hypothe-
sis spaces with non-linear ones. The smoothness metric has also been connected
to effective rank of representations, and has been used in Paper D to empiri-
cally observe that certain classes of contrastive and non-contrastive Self-Supervised
Learning methods behave consistently with the underparameterized regime of su-
pervised learning. The study highlighted a previously unobserved scaling regime
for downstream robustness of SSL representations, whereby downstream robustness
bottlenecks for large enough models, hinting at a deeper scaling law phenomenon
with respect to latent factors indirectly controlled by model scale and dataset size.
Building on the connection between invariance-based learning and representation
robustness, Paper E presented a study of OOD generalization for the linear eval-
uation setting of augmentation-based SSL methods substantiating and establishing
a scaling law behaviour for OOD robustness. In the context of underparameterized
learning, whereby interpolation is not attained, representation smoothness remains
a relevant metric of the quality of representations. However, its direct interpre-
tation is harder due to the lack of normalization, which would in principle allow
to distinguishing between “undertraining” and the preference of a model to learn
simple functions.

4.2 Limitations

The main focus of Papers A-C was to propose scalable metrics for tracking emerg-
ing regularity in overparameterized learning. At the time of publication, Paper A
provided the first large-scale study of activation regions for ResNets. By focusing
on practical training settings, Papers A-B provide post-hoc measures that corre-
late with the generalization ability of deep networks, assuming the model is trained
until interpolation, and falling short of providing generalization bounds based on
the proposed metrics. Additionally, while the proposed metrics are able to track
double descent for the test error, Paper A and C are unable to distinguish be-
tween underfitting and overfitting in the underparameterized regime. While this
is a common limitation of several post-hoc metrics, which are meant for relative
model comparisons [222], generalization measures should in principle provide in-
trinsic notions of regularity, without relying on extrinsic information (e.g. knowing
the relative performance of a different instantiation of the model). While Paper B
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was not directly used for model selection, characterizing local sharpness of the loss
landscape allows to identify “easy” and “hard” examples, for instance originating
from mislabelled samples. Indeed, a subsequent work to Paper B uses local cur-
vature information to detect memorized samples [171], substantiating the results
of Paper B. As previously highlighted, a further limitation of smoothness-based
metrics is that they scale proportionally to the (effective) rank of the model func-
tion, becoming harder to interpret in the underfitting regime. A solution to the
problem is to identify proper normalization of the metrics, in order to compare
different models on a unified scale. In this regard, spectrally normalized notions
of margins [174] may provide inspiration for constructing complexity metrics that
are more directly applicable to the underparameterized regime. A further limita-
tion of local analysis of hypotheses expressed by deep networks is that focusing
on a single parameterization of the model function fails to account for the many
hidden symmetries characterizing deep learning [223]. Particularly, the connection
between input-space and parameter space gradients could be extended to account
for classes of equivalent functions, and the corresponding orbits they form in pa-
rameter space. Finally, a major challenge of understanding and interpreting neural
networks lies in characterizing the alignment between the learned model functions
and the data distribution, both in terms of learning invariance useful for classifi-
cation, as well as in terms of understanding the mechanisms underpinning feature
learning in the finite-width regime in relation to the model architecture. While
the study of the problem beyond linear models is still in its infancy [59], [224],
understanding the input-feature alignment may open the door to deeper studies
of representation learning, allowing to design optimal augmentation strategies, as
well as learning objectives for faster and more robust training. In this regard, a
limitation of Papers D-E is that they only indirectly track feature alignment be-
tween augmented ID data and OOD data, as well as any implicit bias of the model
architecture in learning specific eigendirections.

4.3 Future Work

Several exciting directions for future work lay ahead. In the context of supervised
learning, the connection between parameter gradients and input gradients studied
in Paper C could be extended beyond convergence, casting parameter space tra-
jectories into equivalent trajectories in the model function output space through
a local linear approximation of the function. Particularly, such a study could po-
tentially allow to connect parameter space phenomena, such as linear mode con-
nectivity [188] and layer-wise mode connectivity [71] to related structures in input
space. Furthermore, implicit smoothness regularization could be connected to the
emergence of delayed robustness [70] in ReLU networks, whereby models gain ad-
versarial robustness after prolonged training past the point of interpolation. The
phenomenon strikes resemblance with neural collapse [75], whereby smoothness of
the model function emerges from a collapse of within-class variation of the training
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data. Importantly, Humayun, Balestriero, and Baraniuk [70] observe a simplifica-
tion of the activation regions partition in the late stage of training, suggesting a
promising connection with the findings of Paper A, as well as to the input-gradient
and parameter-gradient connection studied in Paper C. Particularly, research in
this direction could establish a connection between effective rank of the model func-
tion and its smoothness, providing a connection to the structure of robust learners
beyond metric-based properties (e.g. Lipschitz continuity). In the context of SSL,
empirically characterizing the manifold of learned features may allow to establish
a deeper connection to downstream robustness, and particularly a statistical OOD
detection test, whereby candidate points could be rejected based on how far they
lie from the feature manifold. Importantly, the measure itself might allow to gain
deeper insights into the nature of the plateauing behaviour observed in Paper D-
E, potentially allowing to identify directions in feature space that should be covered
by the feature manifold, and even select augmentation policies based on manifold
coverage (based on external validation sets). Such measure could also allow to
differentiate between the robustness behaviour of non-contrastive and contrastive
learning observed in Paper E.



Chapter 5

Summary of Included Papers

This chapter contains abstracts of the included papers and contributions by the
author of the thesis.

Paper A

Are all Linear Regions Created Equal?

M. Gamba, A. Chmielewski-Anders, J. Sullivan, H. Azizpour, M. Björkman.
In International Conference on Artificial Intelligence and Statistics (AISTATS)

(pp. 6573-6590). PMLR. 2022.

Abstract: The number of linear regions has been studied as a proxy of complex-
ity for ReLU networks. However, the empirical success of network compression
techniques like pruning and knowledge distillation, suggest that in the overparame-
terized setting, linear regions density might fail to capture the effective nonlinearity.
In this work, we propose an efficient algorithm for discovering linear regions and use
it to investigate the effectiveness of density in capturing the nonlinearity of trained
VGGs and ResNets on CIFAR-10 and CIFAR-100. We contrast the results with
a more principled nonlinearity measure based on function variation, highlighting
the shortcomings of linear regions density. Furthermore, interestingly, our measure
of nonlinearity clearly correlates with model-wise deep double descent, connecting
reduced test error with reduced nonlinearity, and increased local similarity of linear
regions.
Contributions by the author: Proposed the non-linearity measure as well as
the experimental methodology of the paper. Extended a proof-of-concept imple-
mentation of the activation region discovery algorithm to handle large-scale neural
networks. Executed all experiments and wrote the paper (excluding the illustration
figure).
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Paper B

Deep Double Descent via Smooth Interpolation

M. Gamba, E. Englesson, M. Björkman, H. Azizpour.
In Transactions on Machine Learning Research. 2023.

Abstract: The ability of overparameterized deep networks to interpolate
noisy data, while at the same time showing good generalization performance,
has been recently characterized in terms of the double descent curve for the
test error. Common intuition from polynomial regression suggests that over-
parameterized networks are able to sharply interpolate noisy data, without
considerably deviating from the ground-truth signal, thus preserving gener-
alization ability. At present, a precise characterization of the relationship
between interpolation and generalization for deep networks is missing. In
this work, we quantify sharpness of fit of the training data interpolated by
neural network functions, by studying the loss landscape w.r.t. to the input
variable locally to each training point, over volumes around cleanly- and
noisily-labelled training samples, as we systematically increase the number
of model parameters and training epochs. Our findings show that loss sharp-
ness in the input space follows both model- and epoch-wise double descent,
with worse peaks observed around noisy labels. While small interpolating
models sharply fit both clean and noisy data, large interpolating models ex-
press a smooth loss landscape, where noisy targets are predicted over large
volumes around training data points, in contrast to existing intuition.
Contributions by the author: Proposed the methodology and its mathe-
matical formulation. Implemented the methodology and the majority of the
experiments. Carried out all experiments, wrote the majority of the paper
(excluding parts of the related works section, and the illustration figure).
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Paper C

On the Lipschitz Constant of Deep Networks and Double Descent

M. Gamba, H. Azizpour, M. Björkman.
In 34th British Machine Vision Conference (BMVC). 2023.

Abstract: Existing bounds on the generalization error of deep networks
assume some form of smooth or bounded dependence on the input vari-
able, falling short of investigating the mechanisms controlling such factors
in practice. In this work, we present an extensive experimental study of the
empirical Lipschitz constant of deep networks undergoing double descent,
and highlight non-monotonic trends strongly correlating with the test error.
Building a connection between parameter-space and input-space gradients
for SGD around a critical point, we isolate two important factors – namely
loss landscape curvature and distance of parameters from initialization –
respectively controlling optimization dynamics around a critical point and
bounding model function complexity, even beyond the training data. Our
study presents novels insights on implicit regularization via overparameter-
ization, and effective model complexity for networks trained in practice.
Contributions by the author: Proposed and designed methodology, car-
ried out all experiments and wrote the paper.
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Paper D

Different Faces of Model Scaling in Supervised and
Self-Supervised Learning

M. Gamba, A. Ghosh, K. K. Agrawal, B. A. Richards, H. Azizpour, M. Björkman.
In ICLR Workshop on Bridging the Gap Between Theory and Practice. 2024

Abstract: The quality of the representations learned by neural networks de-
pends on several factors, including the loss function, learning algorithm, and
model architecture. In this work, we use information geometric measures
to assess the representation quality in a principled manner. We demon-
strate that the sensitivity of learned representations to input perturbations,
measured by the spectral norm of the feature Jacobian, provides valuable
information about downstream generalization. On the other hand, measur-
ing the coefficient of spectral decay observed in the eigenspectrum of feature
covariance provides insights into the global representation geometry. First,
we empirically establish an equivalence between these notions of represen-
tation quality and show that they are inversely correlated. Second, our
analysis reveals varying roles of scaling model size in improving generaliza-
tion. Increasing model width leads to higher discriminability and relatively
reduced smoothness in the self-supervised regime, compatibly with the un-
derparameterized regime of supervised learning. Interestingly, we report
no observable double descent phenomenon in SSL with non-contrastive ob-
jectives for commonly used parameterization regimes, which opens up new
opportunities for tight asymptotic analysis. Taken together, our results pro-
vide a loss-aware characterization of the different role of model scaling in
supervised and self-supervised learning.
Contributions by the author: Provided the mathematical formalism,
wrote the majority of the paper (excluding parts of the experiments section),
carried out all experiments (excluding the data poisoning experiment).
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Paper E

When Does Self-Supervised Pre-Training Yield Robust Representations?

M. Gamba, K. K. Agrawal, A. Ghosh, B. A. Richards, H. Azizpour, M. Björkman.
Preprint. 2024

Abstract: Self-Supervised Learning (SSL) provides a powerful class of
learning algorithms for extracting representations of unlabelled data. A
common learning paradigm relies on generating multiple views of the train-
ing data by perturbing inputs with data augmentation, effectively enforc-
ing the representation to attain invariance to certain input perturbations.
While encoding invariance in this way has been shown to reliably improve
downstream performance, its impact on Out of Distribution (OOD) gen-
eralization is underexplored. In particular, invariance-based learning objec-
tives enforce low feature variation under selected input perturbations, which
is a fundamental desideratum when dealing with downstream distribution
shifts. Building on this connection, this work explores OOD robustness
of SSL representations when data is corrupted with noise of increasing in-
tensity, under different model scales and dataset sizes. Strikingly, our ex-
periments suggest that, for fixed training set, increasing encoder capacity
consistently improves in-distribution performance, whereas OOD robustness
plateaus.Furthermore, increasing training set size either virtually (via data
augmentation) or by increasing the number of unperturbed samples improves
OOD robustness across all model scales, delaying the onset of the plateau.
While increasing dataset size with unperturbed samples consistently im-
proves downstream performance as well as robustness, data augmentation
in the low-samples regime offers a strong alternative when acquiring unper-
turbed data is impractical.
Contributions by the author: Provided the mathematical formalism,
wrote the majority of the paper, carried out all experiments by extending
the codebase of A. G. and K. K. A.
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